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Abstract

This paper deals with integration of energy storage systems into electricity
markets. We explain why the energy storage systems increase flexibility of
both power systems and energy markets and why such flexibility is desir-
able, particularly when variable renewable energy sources are being used in
existing power systems. As opposed to the existing literature, our model
includes a dual technology energy storage system, acting in two different
markets. We introduce a mathematical formulation for this model applied
to two Dutch electricity markets. Adopting optimal control approach with
the goal to maximize the yearly benefit, we show that the dual energy storage
system can be profitable already when the same buying/selling strategies are
adopted for the working days and weekends. We show that the profitability
(slightly) increases with different buying/selling strategies for the weekdays
and weekends. Finally, we demonstrate how the yearly benefit varies with
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size and efficiency of the devices chosen and market prices.

Keywords: Energy Storage Systems, Electricity Markets, Renewable
Energy Sources Integration, Optimal Control, Optimization

1. INTRODUCTION1

1.1. Motivation, Background and Literature Review2

The worldwide energy policy goals include further integration of the re-3

newable generation technologies into the energy markets. For example, the4

European Union is striving to achieve 20% of energy generated from re-5

newable energy sources (RES) by 2020 and to reach a minimum of 27% of6

renewable generated energy by 2030, while reducing greenhouse gas emis-7

sions by at least 40% by 2030 compared to their level in 1990 [1]. Objectives8

for 2050 are even more challenging, with a reduction of the carbon emissions9

by 80 − 95% [2]. All around the world (e.g. in China [3], Japan [4], New10

Zealand [5], United States of America [6, 7] and Turkey [8]) the power sys-11

tems are being prepared for an increasing level of deployment of renewable12

generation technologies.13

In conjunction with RES, the integration of other recent technologies,14

such as electric vehicles (EV), but also the unbundling and modification in15

the regulation of the power sector, influence the paradigm and structure16

of the power sector. As electricity has to be dealt with when generated,17

either by being consumed or stored, matching the levels of generation and18

load at all times is fundamental. The fact that most RES are weather-19

dependent will cause the generation output to vary more likely with the20

climate conditions than with the market needs. The increasing integration21

of electric vehicles also increases the likelihood of high load variations during22

the day. The novel technologies are expected to be applied to an extent23

which will certainly amplify the effect of these variations.24

The above mentioned technological and regulatory developments call for25

adjustment of planning and operation of the power systems – they need26

to be more flexible. This flexibility can be achieved through several tech-27

nologies and techniques (e.g. energy storage systems (ESSs‘), cross-border28

interconnection capacity, RES management, more flexibility from conven-29

tional generation, active demand side management and vehicle-to-grid) and30
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their combinations [9]. Among these, ESS is seen as one of the long term31

most feasible options to achieve that goal [10].32

ESSs can provide up to twice their rating (sum of charge and discharge33

capacities) to balance the electricity grid. This is accomplished by switching34

between the two modes of charging and discharging, in either direction (from35

charging to discharging or from discharging to charging). Therefore, ESSs36

help to balance the electricity system when there is a generation surplus or37

a deficit. ESSs can provide various services, most important of which belong38

to one of the two major categories:39

i. power market arbitrage40

ii. ancillary services and balancing41

Power market arbitrage is an energy service provided via charging an en-42

ergy storage device when the electricity prices are low and discharging it43

when the prices are high [11]. The price variations are caused by daily,44

weekly or seasonal cycles. Lately, also variations in renewable power gen-45

eration, e.g. wind and solar energy, are affecting the energy markets to a46

degree depending on their level of market penetration and the flexibility of47

the underlying conventional generation fleet. The most adequate markets48

exercising arbitrage are day-ahead and intra-day markets [12].49

In unbundled markets, the system operators are not allowed to own en-50

ergy generation assets. Therefore, they need to procure several ancillary51

services. Examples of these ancillary services are balancing support and52

congestion management.53

Other services can be supplied by ESSs [6, 7, 11]. [11], depending on54

the characteristics of the specific energy storage technologies. The problem55

of energy storage integration into existing electricity markets was studied56

in [13, 14, 15]. The literature implies that in most markets, with current57

price differences, arbitrage provision is not sufficient to make energy storage58

profitable. Hybrid energy storage systems using two energy storage devices59

are present in the literature. However, these are associated with electric60

vehicle power system or variable renewable energy generation site integration61

into the grid [16]. Nonetheless, to the best of our knowledge, no models62

including two electricity markets and two ESS technologies operating in63

parallel have been developed so far.64

This paper focuses on a combination of energy market arbitrage and pro-65

vision of balancing support by the same dual energy storage system. The66
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model that we introduce in this paper differs from the models analysed in67

the literature in two major aspects. Firstly, we consider a system combining68

arbitrage and ancillary services. With this combination we expect higher69

yearly benefits than using arbitrage only. Secondly, the energy storage sys-70

tem that we propose uses two energy storage technologies simultaneously.71

The dual technology system was chosen in order to profit from character-72

istics of both devices and market price variations. This paper extends our73

research presented in [17].74

In order to see how profitable the ESS could be, in this paper we seek op-75

timal strategy in terms of price thresholds for buying and selling electricity at76

the Dutch day-ahead and balancing electricity markets. Mathematically, we77

formulate the problem as an optimal control problem with the goal to max-78

imize the yearly benefit. Firstly, we consider the situation when buying and79

selling thresholds may vary between working days and weekends. Secondly,80

we consider a situation when the working days and weekend thresholds are81

the same. We use pattern search to find the optimal strategy and motivate82

the choice of this method.83

The remainder of this paper is composed as follows. Section 2 introduces84

electricity markets in The Netherlands. Section 3 explains the background85

of the model we put forward. The problem dealt within this paper is defined86

mathematically in Section 4. Implementation of the model and a solution87

method are described in Section 5. Section 6 presents and discusses the88

results of the case studies. Section 7 finalizes the paper with the conclusions89

and directions for future research.90

1.2. Notation91

Table 1 describes the main symbols used in this paper.92
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Table 1: Main symbols used in this paper, their meaning, and units (if applicable)

Symbol Description Unit

J set of electricity markets and of energy storage devices, J = {1, 2}
j electricity market/storage device, element of set J

D set of days under analysis

δ day, element of set D

Tj set of time steps for market j within a day ‡

tj element of Tj ; time step for market j within a day

M j set of possible modes for market j, M1 = {0}, M2 = {−1, 0, 1, 2}
mj,δ,tj mode of market j on day δ and time step tj , element of set M j

k(δ) day type; indication of working days/weekends, k(δ) ∈ {1, 2}

h
j,k(δ)
B

relative buying threshold for market j

and day type k(δ), h
j,k(δ)
B ∈ [0, 1]

h
j,k(δ)
S

relative selling threshold for market j

and day type k(δ), h
j,k(δ)
S ∈ [0, 1]

u vector of buying and selling price thresholds (to be optimized)

Z(u)
yearly benefit

when set of thresholds u is adopted e

u∗
vector of optimal buying and selling price thresholds

maximizing Z(u)

q
j,δ,tj ,m

j,δ,tj

S

energy quantity sold in market j,

mode mj,δ,tj , day δ and time step tj MWh

q
j,δ,tj ,m

j,δ,tj

B

energy quantity bought in market j,

mode mj,δ,tj , day δ and time step tj MWh

p
j,δ,tj ,m

j,δ,tj

S

selling energy price in market j,

mode mj,δ,tj , day δ and time step tj e/MWh

p
j,δ,tj ,m

j,δ,tj

B

buying energy price in market j,

day δ, time step tj and mode mj,δ,tj e/MWh

πj,δB minimum buying price for market j on day δ e/MWh

πj,δS minimum selling price for market j on day δ e/MWh

xj,δ,tj ,m
j,δ,tj

state of charge of device j on day δ, time step tj and mode mj,δ,tj MWh

q
j,δ,tj ,m

j,δ,tj

D

quantity of energy discharged by device j,

on day δ, time step tj and mode mj,δ,tj MWh

q
j,δ,tj ,m

j,δ,tj

C

quantity of energy charged by device j,

on day δ, time step tj and mode mj,δ,tj MWh

ηjD discharging efficiency of device j, ηjD ∈ [0, 1]

ηjC charging efficiency of device j, ηjC ∈ [0, 1]

qjC,max

maximum amount of energy that
device j can charge in one time step MWh

qjD,max

maximum amount of energy that
device j can discharge in one time step MWh

xjmin minimum state of charge of device j MWh

xjmax maximum state of charge of device j MWh

‡ typical values: 24 time units for an hourly market, 96 time units for market with quarters
of hour as a basic time unit
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Table 2: Main symbols used in this paper, their meaning, and units (if applicable),
continuation of Table 1

Symbol Description Unit

λ2,δ,t2,m
2,δ,t2 energy received by device 2, transferred from

device 1, on day δ, time step t2 and mode m2,δ,t2 MWh

γ1,δ,t1,m
1,δ,t1 energy reserved by device 1 to be transferred

to device 2 on day δ, time step t1 and mode m1,δ,t1 MWh

φ1,δ,t1,m
1,δ,t1 energy reserved on device 1 and not used to

supply device 2 on day δ, time step t1 and mode m1,δ,t1 MWh

σj,δtj−tj−1

historical price volatility in market j for day δ
and time difference tj − tj−1

v
j,δ,tj
tj−tj−1

price return,
ratio between prices at time step tj and

at time step tj−1, for market j and day δ

vj,δ mean price return in market j, day δ

ψj
minimum payback period

for the technology j under analysis years

ρj power rating of device j kW

µj cost per unit of power of device j e/kW

εj energy rating of device j kW

ξj cost per unit of energy of device j e/kWh

oj
yearly fixed operation

e
and maintenance costs for device j

κj
variable operation and maintenance

e/kWh
costs for device j

ι internal rate of return %

? Please check note ‡ in Table 1.

2. Electricity Markets in The Netherlands93

In The Netherlands most of the electricity is still traded in the bilat-94

eral market, where the generation companies sell the electricity directly to95

large consumers, traders and supply companies. The remaining electricity96

generated is traded in one of the two spot markets: the day-ahead and97

intra-day markets. For balancing purposes also a dedicated market exists,98

managed by the Dutch transmission system operator (TSO) TenneT. The99

day-ahead and intra-day markets have distinct dimensions. For 2011, about100

40 TWh of electricity were traded in the day-ahead market and less than101

1% of that value, 278 GWh, were traded in the intra-day market [19]. The102

Netherlands has been identified as “the most promising [electricity market]103

for mass storage” [18].104
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2.1. Day-ahead market105

The Dutch day-ahead market is active every day prior to the day of106

operation and closes at noon. This market has an hourly time unit. Unless107

stated differently, in this paper we use price data from 2014. For this year,108

we calculated the mean price of energy per MWh for the Dutch day-ahead109

market: 41.18 e/MWh. Figure 1 depicts the average prices for 2014 and110

both day-ahead and balancing market. It is possible to observe the weekend111

variation in the day-ahead market in the last two days, where prices tend112

to be lower than during the weekdays.113

2.2. Balancing market114

Balancing markets are volatile, and are used to balance the unattended115

mismatch between generation and load. In The Netherlands, the balan-116

cing market, also called imbalance market, works with a time unit of 15117

minutes. This unit is also called program time unit (PTU). This market is118

managed by TenneT, the national transmission system operator (TSO). The119

TSO tries to avoid the mismatch mentioned as much as possible by sharing120

balancing responsibilities with balancing responsible parties (BRPs). Each121

BRP aggregates a part of the consumers and generators in the network. The122

BRPs submit their daily zero-sum comsumption and generation plans ex-123

ante. Each of these plans include their expected net energy exchange with124

the other BRPs to the TSO. Afterwards, in real time, the TSO verifies if125

there is any imbalance in the system.126

There are two types of BRPs, those specifically asked to provide balan-127

cing capacity by active contributions (Balancing Service Providers - BSPs)128

and those either using the imbalance settlement system for their own imbal-129

ance or being active without being selected [20]. By bidding on the imbal-130

ance market, each BRP gives the TSO the right (but not the obligation) to131

buy balancing energy.132

Load forecasting is not exact and energy generation forecasting with133

increasing integration of variable renewable-based generation is harder to134

achieve. Thus, the balancing market is used to solve these unexpected vari-135

ations, by trading flexibility. Traditionally, this was achieved by increasing136

or decreasing generation [21]. Recently, whenever available, also demand137

side response and energy storage may be used [21], as long as the technolo-138

gies used can cope with the response time required by the system operator.139
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The Dutch imbalance market has 4 possible modes: downwards, upwards,140

upwards/downwards and no contribution, which we will denote by −1, 1, 2141

and 0, respectively (see Table 3). These modes are calculated by the TSO142

in the real time. In mode −1 there is an excess of power in the system. This143

excess of power is also called “long” and requires downward regulation. In144

mode 1 there is a lack of power in the system. This lack of power is also145

called “short” and requires upward regulation. In mode 2 there are periods146

of both excess and lack of power in the system within the time step of 15147

minutes, while in mode 0 there is no imbalance.148
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Table 3: Balancing modes in The Netherlands, based on [20]

Balancing mode
-1 0 1 2

(m2,δ,t2)

Condition
Long No Short Both long

(Downward) Imbalance (Upward) and short

Based on data from 2014, we calculated the average price of energy per149

MWh for the Dutch balancing market: for upward regulation (mode 1) it is150

38.31 e/MWh and for downward regulation (mode −1) it is 11.12 e/MWh.151

The prices in this market vary during the week as shown in Figure 1. Figure 2152

shows the frequency of 2014 prices for both day-ahead and balancing markets153

(upward and downward). The two figures suggest that the prices vary more154

in the balancing market than in the day-ahead market.155

Figure 2: Price histogram for the day-ahead market prices and balancing market upward
and downward prices for 2014. Each bin has a range size of 2 e.

As the yearly benefit of the dual energy storage system depends on the156

price fluctuations in both markets, we have calculated the historical price157
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volatility of the prices, which is a measure of price fluctuations observed158

over a given time period (e.g. hourly, daily, weekly or yearly) [21], see also159

appendix B for details of its calculation. Figure 3 shows the 2014 price160

volatility towards the previous time slot of the same day (one hour in the161

day ahead market and one PTU in the balancing market) for the three types162

of prices of the two markets. Clearly, the balancing market is more volatile163

than the day-ahead market

Figure 3: Volatility towards previous time slot (hour or PTU, depending on the market)
for the 2014 day-ahead and balancing market prices.

164

3. Model Background165

In this section we introduce the background of our model. The two energy166

storage technologies considered are a high energy (bulk) and a high power167

technology, trading in the day-ahead and balancing markets, respectively.168

The model is built from the point of view of the owner of the energy169

storage system, with the goal of maximizing the yearly benefit. The day-170
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ahead market is used to perform energy price arbitrage and the balancing171

market is used to provide ancillary service support.172

Figure 4 depicts the relationship between the considered markets and173

the two types of energy storage devices. We have built two submodels, each174

of them describing the behaviour of one of these devices (see Section 5 for175

details).

Figure 4: Illustration of the relationship between the considered energy markets and
energy storage devices. The arrows indicate the possible energy transfer directions. The
numbers 1 and 2 identify the two submodels.

176

For the sake of simplicity, in our model we assume both perfect electricity177

price forecast and a price taker approach, based on two assumptions:178

1. The storage size is not big enough to modify market prices [23].179

2. There is a perfect forecast window, more or less extended according180

to the study [23].181
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These two assumptions are very standard when analysing potential profit-182

ability of energy storage systems in a modeling framework.183

4. Model Formulation184

Our goal is to find the optimal charge and discharge relative price bound-185

aries, per device type and day, so that the yearly benefit obtained is maxim-186

ized. Mathematically speaking, the problem of finding the optimal strategy187

for the energy storage system operation, composed of the finite set J of188

storage devices, can be formulated as an optimal control problem. For the189

sake of simplicity, we assume that each device has a unique type and that190

this type uniquely identifies the type of market it is used for.1 This paper191

considers J = {1, 2}, where j = 1 identifies both Dutch day-ahead electricity192

market and bulk energy storage device, while j = 2 identifies both Dutch193

balancing electricity market and high power energy storage device. For cla-194

rification on the meaning of the main variables used in our model, please195

see Table 1.196

Mathematical formulation of the optimal control problem dealt with in
this paper reads as follows:

u∗ = arg max
u∈U

Z(u), (1)

where the yearly benefit Z(u) for the vector of relative price thresholds
u = (h1,1B , h1,1S , ..., h2,2B , h2,2S ) is defined as

∑

j∈J

∑

δ∈D

∑

tj∈Tj

∑

mj,δ,tj∈Mj

(
q
j,δ,tj ,m

j,δ,tj

S · pj,δ,tj ,m
j,δ,tj

S − qj,δ,tj ,m
j,δ,tj

B · pj,δ,tj ,m
j,δ,tj

B

)
,

(2)

with respect to equations (3) –(26). Here U = ([0, 1])2·nK ·nJ and h
j,k(δ)
B and

h
j,k(δ)
S refer to relative buying and selling thresholds prices, respectively.

The actual buying and selling prices πj,δB and πj,δS can be then calculated as

1However, this assumption does not change the main ideas behind the model and can
be easily relaxed.
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follows:

πj,δB =

∑
tj∈Tj

∑

mj,δ,tj∈M
j

p
j,δ,tj ,m

j,δ,tj

B

nm
j,δ,tj

Tj

· (1− hj,k(δ)B ), (3)

πj,δS =

∑
tj∈Tj

∑

mj,δ,tj∈M
j

p
j,δ,tj ,m

j,δ,tj

S

nm
j,δ,tj

Tj

· (1 + h
j,k(δ)
S ), (4)

where k(δ) =

{
1, if mod (δ, 7) ∈ {1, 2, 3, 4, 5},
2, otherwise.

Market 1 is always in the same mode 0, i.e., M1 = 0, whileM2 = {−1, 0, 1, 2}
(see Table 3 for overview of these modes). In mode m2,δ,t2 = 2 only one
action (buying or selling) is allowed for device 2. We assume that in such a
situation device 2 sells, because selling is more advantageous for the energy
storage owner, as shown in [17]. Due to the efficiency losses in charging
and discharging, one has to buy more electricity than it can be physically
charged into a device and, similarly, one has to discharge more electricity
than the amount of energy sold:

q
j,δ,tj ,m

j,δ,tj

B =
q
j,δ,tj ,m

j,δ,tj

C

ηjC
, q

j,δ,tj ,m
j,δ,tj

S = q
j,δ,tj ,m

j,δ,tj

D · ηjD, (5)

where ηjD ∈ [0, 1] and ηjC ∈ [0, 1] refer to the efficiencies of discharging and197

charging, respectively, and are known a priori.198

No device can simultaneously charge and discharge electricity and the
amount of electricity charged and discharged cannot exceed its prespecified
boundaries, i.e.,

q
j,δ,tj ,m

j,δ,tj

C · qj,δ,tj ,m
j,δ,tj

D = 0, q
j,δ,tj ,m

j,δ,tj

C ∈ [0, qjC,max],

q
j,δ,tj ,m

j,δ,tj

D ∈ [0, qjD,max]. (6)

As each market/device j can only be in one mode mj,δ,tj on day δ and time
step tj , we set quantities of electricity charged and discharged and their
buying and selling prices for all other but the current mode, same day δ and

14



time step tj , to zero:

q
j,δ,tj ,b
C = 0 ∀b ∈M j \ {mj,δ,tj}, if q

j,δ,tj ,m
j,δ,tj

C > 0, (7)

q
j,δ,tj ,b
D = 0 ∀b ∈M j \ {mj,δ,tj}, if q

j,δ,tj ,m
j,δ,tj

D > 0, (8)

p
j,δ,tj ,b
B = 0 ∀b ∈M j \ {mj,δ,tj}, if p

j,δ,tj ,m
j,δ,tj

B > 0, (9)

p
j,δ,tj ,b
S = 0 ∀b ∈M j \ {mj,δ,tj}, if p

j,δ,tj ,m
j,δ,tj

S > 0. (10)

Mode mj,δ,tj and electricity prices for each market j, day δ and time step tj199

are exogenous and assumed to be known a priori.200

Our model takes advantage of any lower prices in the day-ahead market201

when compared with the balancing market, by transferring energy from202

device 1 to device 2. As device 2 has a time step of 15 minutes, two complete203

cycles of charging and discharging may be performed in one hour.204

In order to avoid any inconsistency, since device 1 and device 2 are used
in our model with different time steps, the energy transferable from one
device to another is reserved a priori. This reservation is performed every
hour, which is the time step of device 1 and larger of the two time steps.
Equation (11) determines this energy reserved in device 1 transferable to
device 2. As device 1 is much bigger than device 2, device 1 can provide a
temporary additional output to charge device 2 when needed:

γ1,δ,t1,m
1,δ,t1

=





2·q2C,max

η1D·η2C
, if x1,δ,t1−1,m

1,δ,t1−1
+ q1,δ,t1,m

1,δ,t1

C

≥ 2·q2C,max

η1D·η2C
+ x1min,

0, otherwise.

(11)

The energy transfer will only happen when device 2 is not being used in
market 2 in the current time step t2, as stated in (12). Also, device 2 can
only receive energy if it is partially or fully discharged. If so, device 2 will
receive the energy from device 1 (λ2,δ,t2,m

2,δ,t2 ). This amount will be the
lower of two values: maximum quantity q2C,max charged by device 2 or the

energy
x1,δ,t1,m

1,δ,t1−x1min

η1D·η2C
that can be transferred to device 2 from device 1.
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This transfer can occur in every 15 minutes. For each t2 ∈ {4 t1−3, . . . , 4 t1},

λ2,δ,t2,m
2,δ,t2

=





min(q2C,max, x
2
max − x2,δ,t2−1,m

2,δ,t2−1
),

if γ1,δ,t1,m
1,δ,t1 6= 0,

q2,δ,t2,m
2,δ,t2

C = 0

and q2,δ,t2,m
2,δ,t2

D = 0,

0, otherwise.

(12)

The amount of energy reserved in device 1 not transferred to device 2 is
defined as For each t1 = 1, 2, . . .

φ1,δ,t1+1,m1,δ,t1+1
= γ1,δ,t1,m

1,δ,t1 −
∑4

i=1 λ
2,δ,(t1−1)·4+i,m2,δ,(t1−1)·4+i

η1D · η2C
. (13)

Here also the losses of discharging device 1 and charging device 2 are taken
into consideration. The current state of charge of devices 1 and 2 depends
on their state of charge in the previous time step:

x1,δ,t1,m
1,δ,t1

= x1,δ,t1−1,m
1,δ,t1−1

+ q1,δ,t1,m
1,δ,t1

C − q1,δ,t1,m1,δ,t1

D

− γ1,δ,t1,m1,δ,t1
+ φ1,δ,t1,m

1,δ,t1
, (14)

x2,δ,t2,m
2,δ,t2

= x2,δ,t2−1,m
2,δ,t2−1

+ q2,δ,t2,m
2,δ,t2

C

− q2,δ,t2,m2,δ,t2

D + λ2,δ,t2,m
2,δ,t2

. (15)

When it is not possible to charge or discharge quantities q1C,max or q1D,max,

the device will charge or discharge as much as possible, given by x1max −
x1,δ,t1−1,m

1,δ,t1−1
and x1,δ,t1−1,m

1,δ,t1−1 − x1min, respectively. As most energy

storage devices cannot be fully discharged, xjmin represents the minimum
useful state of charge, the lowest charge level the storage device can be

discharged to. Quantity q1,m
1,δ,t1 ,δ,t1

D is defined as follows:

q1,δ,t1,m
1,δ,t1

D =





min(q1D,max, x
1,δ,t1−1,m1,δ,t1−1 − x1min),

and p1,δ,t1,m
1,δ,t1

S ≥ π1,δS ,

0, otherwise.

(16)

As device 1 starts discharged, equation (16) is only valid for t1 ≥ 2 or when

δ ≥ 2. Likewise, q1,m
1,δ,t1 ,δ,t1

C is defined as follows:

q1,δ,t1,m
1,δ,t1

C =





min(q1C,max, x
1
max − x1,δ,t1−1,m1,δ,t1−1),

if p1,δ,t1,m
1,δ,t1

B ≤ π1,δB ,

0, otherwise.

(17)
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If device 2 cannot charge the maximum quantity of energy charged q2C,max,

as it would overrun the maximum amount of charge x2max, it will charge

quantity x2max − x2,δ,t2−1,m
2,δ,t2−1

. Similarly, when discharging, if device 2
cannot discharge the maximum quantity of energy discharged q2D,max, as it

would overrun the functional minimum amount of charge x2min, it will charge

the quantity x2,δ,t2−1,m
2,δ,t2−1 − x2min.

q2,δ,t2,m
2,δ,t2

D =





min(q2D,max, x
2,δ,t2−1,m2,δ,t2−1 − x2min),

if m2,δ,t2 ∈ {1, 2},
p2,δ,t2,m

2,δ,t2

S ≥ π2,δS ,

0, otherwise.

(18)

q2,δ,t2,m
2,δ,t2

C =





min(q2C,max, x
2
max − x2,δ,t2−1,m

2,δ,t2−1
),

if m2,δ,t2 = −1,

and p2,δ,t2,m
2,δ,t2

B ≤ π2,δB ,

0, otherwise.

(19)

As device 2 starts discharged, equation (18) is only valid only for t2 ≥ 2 or205

when δ ≥ 2.206

The maximum discharge capacity q1D,max of device 1 is lower or equal to207

its maximum state of charge x1max minus the transferable energy to device 2208

2·q2C,max

η1D·η2C
:209

q1D,max ≤ x1max −
2 · q2C,max

η1D · η2C
. (20)

Other constraints:

qjC,max ≤ xjmax, (21)

q2D,max ≤ x2max, (22)

qjD,min = qjC,min = 0, (23)

0 ≤ xjmin ≤ xjmax. (24)

Initial conditions:

xj,1,0,m
j,1,0

= 0, (25)

φ1,1,1,m
1,1,1

= 0. (26)
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In words, the problem (1), subject to (2)–(26), is to find the selling and210

buying threshold prices per day in a week, for each device type/market, so211

that the revenue of the entire storage system device is maximized.212

5. Implementation213

In this section we describe the implementation of the model and optimal214

price thresholds, given by (1)–(26). The technical and economical data on215

the devices are taken from [11]. All case studies defined by equations were216

implemented using Matlab®.217

The problem (1)–(26) could not be solved by standard optimization tech-218

niques, such as gradient-based optimization methods, due to many local219

minima and even regions in the domain of the yearly benefit function which220

correspond to the same benefit value. After experimenting with heuristic221

solution methods, such as particle swarm optimization (PSO), we have ad-222

opted a pattern search (PS) algorithm included in the Matlab optimization223

toolbox for solving the problem. The main advantages of PS are its speed224

and the fact that it does not use gradient approximation to maximize the225

profit function. Therefore, PS is often used for maximizing complicated226

functionals which are nonsmooth or even discontinuities and/or have many227

local minima. The method was first proposed in the literature by [25] and228

is extensively described in [26].229

Algorithm for solving the problem (1)–(26) is depicted in Figure 5. For230

comparison purposes we also calculated the results when using a single231

weekly set of price thresholds per device, using the algorithm depicted in232

Figure 6.233
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We assume that both devices can be fully discharged (xj,min = 0) and234

start discharged (xj,1,0,m
j,1,0

= 0). No self-discharge was considered as the235

devices are working almost continuously. Ramp rates were also not con-236

sidered.237

6. Case studies238

6.1. Finding optimal price thresholds239

We have calculated the solution to the problem (1)–(26) for year 2014240

using the pattern search introduced in Section 3. For 2014, the optimal u∗241

contains price thresholds depicted in Figure 7.242

The generic bulk energy storage power rating is varied between 50 and243

150 MW for a discharge duration of 5 to 10 hours. The energy rating varies244

between 500 and 1500 MWh. The power rating is the maximum amount of245

energy that the device can charge or discharge in one hour. Unless men-246

tioned otherwise, the round trip efficiency is 80%= 0.80, and the charging247

and discharging efficiencies are equal to
√

0.8(≈ 0.8944 = 89.44%). The248

electricity market data used to evaluate the profitability of this device is249

Dutch day-ahead market data provided by the spot market APX-Endex.250

For the high-power device, the power rating is varied between 20 and251

60 MW. The nominal discharge duration is of 15 minutes. As energy rating252

of the device is calculated as its power rating multiplied by its time of dis-253

charge of that same device, the energy rating will vary from 5 to 15 MWh.254

Therefore, this energy rating interval [5, 15] MWh was selected as the base255

power rating of device 2. The minimum bid size for the Dutch balancing256

market is 5 MW [20] per PTU of 15 minutes. The default charging and257

discharging efficiencies of this device are both 95% (0.95), which results in258

a round trip efficiency of around 90% (0.90). The balancing market data is259

publicly available from the Dutch TSO TenneT [28]. The dimensions and ef-260

ficiency levels of both devices are chosen according to technologies described261

in [11]. Figure 7 shows the solution to the problem (1)–(26) when two sets262

of thresholds are applied. The size of the bulk and the high power devices263

in this example are 50 MW, 500 MWh and 20 MW, 5 MWh, respectively.264

There, different results can be observed for weekdays and weekends. For the265

day-ahead market and bulk device, weekend thresholds are usually lower.266

For the balancing market and high power device, the difference is bigger.267

In this case, the yearly benefit is the highest when the high power device is268
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used to buy less in the weekends and when it sells more during the working269

days than in the weekends. The last However, it was realized that the im-

Figure 7: Optimal relative thresholds. The value of the selling thresholds indicates how
much above the daily mean selling price the electricity will be sold, while the value of
the of the buying thresholds indicates how much below the daily mean buying price the
electricity will be bought. Device sizes are 50 MW, 500 MWh and 20 MW, 5 MWh, for
the bulk and the high power device, respectively. The optimal working day (written as
“weekdays” in the caption) buying threshold for the high power device is zero. The yearly
benefit with this set of thresholds is 2.615 Me.

270

provement towards a single set of thresholds was limited (0.2 − 1.1%) and271

the computational time was at least doubled. This is possibly due to the272

weekend prices being usually lower than the ones of the working days and273

that their volatility is lower than volatility of the prices for working days.274

Therefore, less opportunities for the devices to be active in the respective275

markets. These situations can also be observed in Figure 1 and in Figure 3,276

particularly for the day-ahead market. Due to this limited improvement of277

yearly benefit when having variable selling and buying thresholds for work-278

ing days and weekends, we will use the single set of thresholds for the rest279

of the paper.280

Using data from 2014, we have calculated the revenues when varying the281

rating of both devices see Figure 8. Here “50 · 10” refers to a device with a282

nominal power rating of 50 MW and a discharge duration of 10 h. Increasing283

22



the size of the bulk device three times (high power device of 5 MWh, bulk284

device of 150 MW and 10 h of discharge time) and increasing the size of the285

high-power device (high power device of 15 MWh, bulk device of 50 MW286

and 10 h of discharge time) have almost the same impact on the yearly be-287

nefit, when compared with the base situation (high power device of 5 MWh,288

bulk device of 50 MW and 10 h of discharge time). This is an interesting289

observation for eventual practical applications, as the costs for increasing290

the size of the two devices can be different. For comparison purposes, we

Figure 8: Yearly benefit when varying the rating of the two devices.

291

have calculated the revenues using only the bulk energy device. The result292

is shown in Figure 9. Clearly, the power rating has a higher impact on the293

yearly benefit when compared to the impact of energy rating. The two left294

bars correspond to the same energy rating (500 MWh) and two different295

power ratings (50 MW and 100 MW, respectively). Figure 10 shows that296

the yearly benefit increase when moving from the situation with a single297

device (Figure 9) to the situation with the dual energy storage system (Fig-298

ure 8). The highest increase of the yearly benefit is for the bulk device299

with the lowest power and energy rating (50 MW and 500 MWh). With300

this bulk device, including a high power (HP) device of 5, 10, and 15 MWh301
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Figure 9: Revenues using only the bulk device and data from 2014.

leads to the yearly benefit increase of 85%, 170%, and 256%, respectively.302

Figure 11 compares the yearly benefits when using only the bulk device and303

the two devices, respectively, for several device sizes and with price data304

from 2014. The four subfigures display different yearly benefit distribution305

between the devices: For the first case (bulk: 100 MW·10 h, HP: 5 MWh),306

the bulk device operating on the day-ahead market (device and market 1)307

obtains 56.03% of the yearly benefit, while the high-power device operat-308

ing on the balancing market (device and market 2) obtains 43.97% of the309

yearly benefit. The yearly benefit of device 1 is lower than in a stand-alone310

situation, due to energy transferred from device 1 to device 2. The lower311

bar shows the yearly benefit when only the bulk device operating in the312

day-ahead market is used. The comparison of the two bars indicates that313

by combining devices 1 and 2, the yearly benefit in the day-ahead market is314

reduced by 20.05%, while the total yearly benefit increases by 42.69%. For315

the last case (bulk: 50 MW·10 h, HP: 15 MWh), a reduction by 110.95%316

in the day-ahead market yearly benefit (a net loss of 10.95%) and an in-317

crease of 255.96% in the total yearly benefit can be observed. The results318

for the examples from figure 11 are shown in table 4. Additionally, we have319
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Figure 10: Revenues increase (in %) from using only the bulk device to two devices.

Table 4: Results for the examples shown in Figure 11

Bulk HP Bulk share HP share Bulk variation to Overall

size size (%) (%) standalone (%) increase (%)

100 MW·10 h 5 MWh 56.03% 43.97% -20.05% 42.69%

50 MW·10 h 5 MWh 33.87% 66.13% -37.26% 85.26%

50 MW·10 h 10 MWh 5.93% 94.07% -83.97% 170.45%

50 MW·10 h 15 MWh -3.08% 103.08% -110.95% 255.96%

analysed the impact of round trip efficiency of both devices on the results,320

see Figure 12. The device ratings are 50 MW and 500 MWh for the bulk321

device and 20 MW and 5 MWh for the high-power device, respectively. The322

charging and discharging efficiencies are assumed to be the same and equal323

to the square root of the round trip energy efficiency. Figure 12 illustrates324

that the efficiency of the bulk device has a greater impact on the yearly325

benefit than the efficiency of the high power device.326

Furthermore, we have analysed the impact of using energy prices from327

the years 2012 and 2013 on the model predictions and compared them to328

those with the 2014 prices. Figure 13 shows the results for a bulk device of329
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Figure 11: Yearly benefit distribution for the results mentioned in table 4, when using
dual and single ESS
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Figure 12: Impact on the results of efficiency of the devices. Size of the devices used for
the bulk device: 50 MW and 500 MWh, for high power: 20 MW and 5 MWh.

50 MW and 500 MWh and a comparison between the high power devices330

of 20 MW, 5 MWh and of 40 MW, 10 MWh. Round trip efficiencies are331

70% and 90% for the bulk and the high-power devices, respectively. The332

volatilities towards the previous time slot for the 2012 and 2013 electricity333

prices are shown in appendix B. The yearly benefit for 2014 are below the334

average yearly benefit of two years before.335

6.2. Cost-benefit analysis for different energy storage devices336

Here we focus on calculating of the payback period (PBP) for using the
ESS, depending on which particular ESS is used. The PBP (ψ) is calculated
by dividing the initial investment by the yearly net revenues [30] as shown in
equation (28). In order to increase the accuracy of this study, we have used
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Figure 13: Impact of prices in the revenues. Devices used: Bulk device characteristics are
50 MW, 500 MWh and 70% efficiency. High power efficiency used is 90%, and the ratings
used are 20 MW, 5 MWh and 40 MW, 10 MWh.

price data from years 2012, 2013 and 2014. 2 The costs of the devices used
to calculate the initial investment are taken from [11]. The costs per unit of
power (kW) and unit of energy (kWh) of device j are denoted by µj and ξj ,
respectively. The power and energy ratings for a device j are denoted by ρj

and εj , respectively. The Euro/Dollar conversion rate is 1/1.10, following
the information provided in [27]. The yearly benefit Z(u) is replaced by
Z ′(u) defined as3

∑

j∈J

∑

δ∈D

∑

tj∈Tj

∑

mj,δ,tj∈Mj

(
q
j,δ,tj ,m

j,δ,tj

S · (pj,δ,tj ,m
j,δ,tj

S − κj)

− qj,δ,tj ,m
j,δ,tj

B · pj,δ,tj ,m
j,δ,tj

B

)
, (27)

2Other approaches could be used such as the one presented by [29], where energy
storage device optimal sizing for arbitrage provision is evaluated.

3With a slight abuse of notation as u maximizing Z′(u) will differ from original u∗

maximizing Z(u)
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which takes the variable the variable O&M costs κj per unit of energy for337

device j into account.338

The yearly net benefit is calculated by subtracting the yearly operation
and maintenance costs oj from the optimal yearly benefit Z ′(u∗). Further-
more, we compare the payback period ψ defined as

ψ =

∑
j∈J

(ρj · µj + εj · ξj)

Z ′(u∗)− ∑
j∈J

oj
. (28)

for the years 2012–2014 with those of 2014. The internal rate of return ι is
used to calculate the profitability of potential investments in the ESS and
is calculated for a certain prespecified number of years N , so that equality

N∑

n=0

Z ′(u∗)− ∑
j∈J

oj

(1 + ι)n
−
∑

j∈J
(ρj · µj + εj · ξj) = 0 (29)

is satisfied. In the two case studies to follow, we will discuss ι calculated for339

N = 10, 15 and 20 years. We will also compare ι obtained with average of340

values for Z ′(u∗) and oj over years 2012–2014 with those from 2014 only. As341

in this case studies we will vary technologies used for the ESS, in Appendix C342

we discuss technologies available in detail.343

6.2.1. Case study 1: Cost benefit analysis with D-CAES and Li-ion battery344

technologies345

For the first case study a traditional D-CAES of 50 MW and 500 MWh346

is used as the bulk device. A Li-ion battery (LI) technology of 10 MWh347

was selected as the high power device. The round trip efficiencies are 50%348

and 85% for the D-CAES and for the LI, respectively, as reported in [11].349

For D-CAES, the minimum costs ε1 and ξ1 are 3.64 · 105 e/MW and 1.82 ·350

103 e/MWh, respectively. For LI, ε2 and ξ2 are 1.09 · 106 e/MW and 5.45 ·351

105 e/MWh, respectively [11]. Operation and maintenance costs are the352

average values presented in [31]. For LI the fixed O&M costs are 6.9 e/KW-353

yr and the variable costs are 2.1 e/MWh. For the D-CAES the fixed O&M354

costs are 3.9 e/KW-yr and the variable costs are 3.1 e/MWh.355

Table 5 shows the results of the cost benefit analysis. The internal rate356

of return ι was calculated for average yearly benefit over years 2012–2014357

(see Figure 14 for the yearly benefits and its average) and for 20, 15 and358
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10 years. The payback period ψ was calculated for the average yearly benefit359

from years 2012–2014 and also when the lowest yearly benefit of these 3 years360

was considered (year 2014). These results show that this system will take

Figure 14: Results for DCAES 50 MW, 500 MWh and 50% efficiency and LI 40 MW,
10 MWh and efficiency 85%.

Table 5: Cost benefit results for case study 1

Average 2012–2014 2014

ψ (yr) 17.30 26.63

ι at 20 years (%) 1 -3

ι at 15 years (%) -2 -6

ι at 10 years (%) -9 -15

361

more than 17 years to be paid back when considering average year benefits362

over years 2012–2014. For this case study, ι (IRR) in the first 20 years will363

be slightly positive (1%). Using the values of 2014, it will take almost 27364

years for the devices to be paid and ι will be negative in all the situations365

analysed.366
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6.2.2. Case study 2: Cost benefit analysis with AACAES and flywheel tech-367

nologies368

For the second case study a AACAES of 50 MW and 500 MWh is used369

as bulk device, while a flywheel (FW) technology of 15 MWh was selected370

as a high power device. The round trip efficiencies are 70% and 90% for the371

AACAES and for the FW, respectively [11]. For AACAES, the costs con-372

sidered are 40% higher than the costs of D-CAES, following [31]. Therefore,373

the minimum costs µ1 and ξ1 are 5.09 · 105 e/MW and 2.55 · 103 e/MWh,374

respectively. For FW, µ2 and ξ2 are 2.27 ·105 e/MW and 9.1 ·105 e/MWh,375

respectively [11]. Operation and maintenance costs are taken from [31].376

For FW the fixed O&M costs are 5.2 e/KW-yr and the variable costs are377

2.0 euro/MWh. For AACAES, also the fixed O&M costs are increased by378

40% when compared to D-CAES, to 5.46 e/KW-yr. For the AACAES vari-379

able costs, as no natural gas is consumed in this case, they are considered380

the same as for PHES, 0.22 e/MWh.381

Table 6 shows the results for the cost benefit analysis. The calculations382

were performed as in Case study 1. For the assessment of ι average yearly383

benefit over years 2012–2014, depicted in Figure 15, was considered. Para-384

meter ι was calculated for N = 20, 15 and 10 years. Two payback periods385

were calculated with the average yearly benefits over years 2012–2014 first386

and with only 2014 yearly benefits second. The results demonstrate that

Table 6: Cost benefit results for case study 2

Average 2012–2014 2014

ψ 10.00 14.64

ι at 20 years (%) 7.72 3

ι at 15 years (%) 5.53 0.31

ι at 10 years (%) 0.00 -6.39

387

this system will take 10 years to be paid back with the yearly benefit aver-388

aged over years 2012–2014. With yearly benefits from year 2014, the system389

will be bayed back in almost 15 years. With the average yearly benefit, ι390

was positive with N = 10 years, achieving 7.72% around 20 years of usage.391

For the yearly benefit of 2014, ι reaches positive values after 15 years of392

usage, achieving 3% after 20 years.393

The net yearly benefit per kWh of energy sold for both case studies and394

the three years under analysis are shown in Figure 16. The yearly benefit395

per KWh is higher in case study 1. However, the amount of energy sold is396
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Figure 15: Results for AACAES 50 MW, 500 MWh and 70% efficiency and FW 60 MW,
15 MWh and efficiency 90%.

higher in case study 2, as shown in Figure 17. Therefore, the normalized397

yearly benefit is higher for case study 2, as can be seen from comparing398

Figures 14 and 15.399

6.3. Discussion400

The results obtained in the last two case studies (around 10-27 years of401

payback time) indicate that systems similar to the ones presented in this402

paper have, under certain conditions, potential to be cost effective. By403

varying ratings for the devices used, we could increase yearly benefits by up404

to 256 %. We have shown how the costs, size and efficiency of the devices405

impact the feasibility of ESS.406

Further integration of variable RES is expected to increase potential rev-407

enues from balancing provision. Additionally, with the increasing deploy-408
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Figure 16: Net yearly benefits for both case studies.

Figure 17: Amounts of energy sold in both case studies.

ment and maturity of energy storage technologies, their investment and409

maintenance costs are expected to decrease, while their effective life span is410

expected to increase. This fact, associated with the potential higher volatil-411

ity of energy prices due to variable RES integration, increases the potential412

for profitability of systems as the one presented in this paper. Of course,413

other factors, such as future energy policies, market regulation, price vari-414
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ations and maintenance costs, should be taken into account and optimization415

techniques are very useful for assessing the potential profit of the ESS. An416

example of a different, but complementary approach, is presented in [29]417

where the size of a single device energy storage system is optimized fpr the418

needs of different European markets, comparing two distinct technologies.419

The results presented in the case studis, such as the payback period or the420

internal rate of return may explain why although the ESS can be financially421

feasible and viable, it has not yet been deployed. The high risk associated422

with new technologies and business models is another likely reason. Fur-423

thermore, the power system stakeholders are seen as risk-averse, partially424

due to the need for presenting high levels of reliability, which strengthens425

the impact of high risk. Finally, there may be other reasons behind the non-426

deployment of these systems and technologies, which should be carefully427

evaluated. These seem to be of neither technological nor financial nature.428

7. Conclusions429

In this paper we presented a novel model of a dual energy storage sys-430

tem using two different storage technologies, trading simultaneously in two431

energy markets. We have adopted pattern search to find optimal strategies432

to operate this system. We have analysed the impact of using a dual en-433

ergy storage device system and of different buying and selling strategies for434

weekdays and weekends. We have shown that it is possible to increase the435

revenues by up to 270% compared to using a single energy storage device.436

We have observed that for the price data used no significant improvement437

was obtained by using different buying and selling strategies for weekdays438

and weekends. This might change with different price data, though. We439

have studied impact of size, efficiencies and market price variation on the440

ESS yearly benefits. Finally, we have demonstrated that, depending on the441

level of the costs and efficiency of the devices used to build this system, they442

are be already cost effective.443

In the framework of an increasing amount of intermittent electricity gen-444

eration, the price fluctuations in the market are expected to increase, which445

will then also increase the level of yearly benefits and reduce the payback446

period of the energy storage systems. Therefore, with the increasing need for447

electricity network flexibility, the potential of systems like the one presented448

in this paper is high. Nonetheless, that will depend on many aspects influ-449
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enced by future decisions and market behaviours, which we cannot take into450

consideration at this stage.451

In out future work, we intend to analyse the impact of imperfect price pre-452

diction on the economic benefit obtained and more advanced buying/selling453

strategies for ESS.454
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Appendix A: Location of underground salt reservoirs in Europe461

Figure 18 shows the location of underground salt reservoirs in Europe.462

A substantial area of The Netherlands lies above a region where these salt463

reservoirs are located. These reservoirs can be used to build underground464

caves which in turn will be part of a compressed air energy storage system465

(CAES).466
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Figure 18: Location of underground salt reservoirs in Europe. Courtesy of KBB techno-
logies
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Appendix B: Volatility of the Dutch day-ahead and balancing mar-467

ket for years 2012 and 2013468

To calculate the historical price volatility towards the previous time slot469

(σj,δ,m
j,δ,tj

tj−tj−1
) for market j and day δ we used equation (30). Historical price470

volatility is the standard deviation of price return v
j,δ,tj
tj−tj−1

calculated by471

equation (31). In these equations, pj,δ,tj is the spot price at time tj , p
j,δ,tj−1472

the spot price at time tj−1, nTj is the number of time periods of the market473

(24 hours or 96 PTUs) and vj,δ is the mean of the price quotients v
j,δ,tj
tj−tj−1

in474

market j at day δ. We have applied equation (30) to the Dutch day-ahead475

market prices and to both upward and downward prices of the balancing476

market. For the balancing market, PTU is used instead of the hour which477

is used in the day-ahead market.478

σj,δtj−tj−1
=

√√√√√
∑

tj∈Tj

(v
j,δ,tj
tj−tj−1

− vj,δ)2
nTj − 1

(30)

v
j,δ,tj ,m

j,δ,tj

tj−tj−1
=

pj,δ,tj

pj,δ,tj−1
(31)

In Figures 19 and 20 are presented the volatility towards the previous479

time slot (hour or ptu) of the Dutch day-ahead and balancing market for480

the years 2012 and 2013, respectively.481
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Figure 19: Market volatility towards previous time slot (hour or PTU, depending on the
market) for the 2012 day-ahead and balancing market prices.
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Figure 20: Market volatility towards previous time slot (hour or PTU, depending on the
market) for the 2013 day-ahead and balancing market prices.
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Appendix C: Possible technologies that can be used for energy482

storage483

We have analysed the possible technologies that can be used as bulk and484

high power technologies, respectively.485

For bulk technologies, the available options are: pumped-hydro energy486

storage (PHES), diabatic compressed air energy storage (D-CAES) and adia-487

batic advanced compressed air energy storage (AACAES). The PHES is488

widely used and is the most mature bulk technology. However, this tech-489

nology is dependent on geological conditions and availability of possible490

sites. The geological conditions in The Netherlandsare not optimal to build491

traditional PHES systems, especially due to the flat landscape. The CAES492

technologies are appropriate bulk technologies for The Netherlands, as these493

technologies can be built using either the existing underground salt deposits494

in the centre and north of the country or the depleted gas reservoirs in the495

north of the country. See Appendix A for schematic representation of the496

salt deposits in Europe. The first D-CAES system was installed in 1978 in497

Germany [11]. This technology uses natural gas to both charge and discharge498

the underground reservoirs. Although AACAES is currently a theoretical499

technology, the test results are very promising. Instead of gas-based com-500

pressors, it can use electric compressors. Furthermore, the resulting heat501

of the air compression which occurs when the device charges is stored and502

used to heat the expanding air when the device discharges. These AACAES503

developments increase the efficiency of this technology and reduce operation504

costs when compared with D-CAES [18]. All bulk technologies have a very505

long durability of 20-100 years. This includes CAES; the first equipment506

installed is still functional after 37 years [11].507

For the high power energy storage several technologies can be considered508

[11]. Among those, one may highlight lead-acid, lithium-ion, nickel-cadmium,509

sodium-sulphur, zebra (NaNiCl2) batteries, and flywheels. An appropri-510

ate technology should lead to a very fast response time (in order of few511

seconds)to any mode switch between charging, idle and discharging. Moreover,512

such technology should have a modular capacity allowing a realistic imple-513

mentation of the power and energy size specifications of the device. In the514

long term, another important aspect is the cycling durability, as the high515

power device will be working very frequently. Lead-acid batteries are a ma-516

ture technology with low initial costs. Lithium-ion batteries present good517

durability and efficiency. Nickel-cadmium batteries present good durabil-518

ity and robustness to deep discharges. Sodium-sulphur batteries present519
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the advantages of low maintenance and below average initial costs. Zebra520

(NaNiCl2) batteries present good robustness to self discharge. Flywheels521

have the advantage of a theoretical unlimited amount of charge and dis-522

charge cycles.523
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