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Abstract—The Lloyd algorithm is a key concept in multi-robot
Voronoi coverage applications. Its advantages are its simplicity
of implementation and asymptotic convergence to the robots’
optimal position. However, the speed of this convergence cannot
be guaranteed and therefore reaching the optimal position may
be very slow. Moreover, in order to ensure the convergence, the
Hessian of the corresponding cost function has to be positive
definite all the time. Validation of this condition is mostly
impossible and, as a consequence, for some problems the standard
approach fails and leads to a non-optimal positioning. In such
situations more advanced optimization tools have to be adopted.
This paper introduces Stackelberg games as such a tool. The
key assumption is that at least one robot can predict short-
term behavior of other robots. We introduce the Stackelberg
games, apply them to the multi-robot coverage problem, and
show both theoretically and by means of case studies how the
Stackelberg-based coverage approach outperforms the standard
Lloyd algorithm.

Keywords—Swarm robots; Coverage control; Lloyd algorithm;
Game theory; Stackelberg games

I. I NTRODUCTION

In recent years many researchers in robotics, control, and
computer science have focused on swarm robotics and have
developed solutions of fundamentalswarm roboticproblems
(see [1] for solving flocking control problem, [2] for aggre-
gation, [3] for multi-robot coverage, and [4] for formation).
However, most of the proposed solution methods encounter
difficulties in real-world applications, such as finding only sub-
optimal solutions and the inability of the algorithms to account
for non-convex environments. Subsequently, despite the wide
range of existing works in the domain of multi-robot coverage
[3], [5]–[9], there are still only very few in-field deployments,
due to a wide gap between the theory of multi-robot coverage
systems and the practice.

The Stackelberg Coverage (StaCo) approach proposed in
this paper addresses the deficiencies of the existing works
in multi-robot coverage, by adding one or more relatively
advanced robots, called leaders, to the swarm. In other words,
we assume a priori a heterogeneous robotic swarm, similar to
that shown in Figure 1. In this figure, two intelligent robotsact
as the leaders, which can perceive the environment globally,
and a large swarm of simple robots following simple local
rules. The main advantage of such a heterogeneous approach
is preserving the simplicity of the major population of the
robotic swarm, while a small group of robots can predict
behavior of the others and act so that the desired behavior is
achieved faster and with a higher precision. The main building

block of our approach is the so-calledStackelberg game theory
[10], [11], which belongs to the more general noncooperative
game theory [10], [12]. Game theory has been successfully
applied in various fields; its known applications in the robotic
field relate to pursuit-evasion and search problems [13], [14].
However, application of the Stackelberg games in the multi-
robot coverage is new.

The remainder of the paper is structured as follows: A
motivation example of classical coverage limitations willbe
presented in Section II. In Section III we will briefly review
the game-theoretic preliminaries and introduce Stackelberg
games. In Section IV the Voronoi-based coverage problem
will be defined as a Stackelberg game and its properties
will be discussed. The simulation setup and the results of
applying the proposed approach will be presented in SectionV.
In Section VI we will discuss the advantages of the StaCo
approach and give concluding remarks.

II. M OTIVATION

A motivaton example, which illustrates the limitations of
classical approaches in mutli-robot coverage, is shown in
Figure 2. The group of robots, initiated in the position depicted
in Figure 2a, moves based on the standard coverage approach
suggested in [3]. With this approach, the robots are driven to
the final configuration shown in Figure 2b. However, this con-
figuration is sub-optimal (The globally optimal solution will
be found adopting the StaCo approach proposed in this paper
in Section V, Figure 7c). The problem of being enmeshed

Figure 1. A heterogeneous robotic swarm with 2 leading robots and
34 following robots. The followers can collect informationonly from their
neighbors, while the leaders are capable of collecting information from the
entire robotic swarm. The leaders may be able to predict possible future
reactions of the followers and to enforce their own decisions on the followers.
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Figure 2. Example of the problem in which the standard coverage approach
leads to only a locally optimal but not the globally optimal configuration (dots
denote robot locations and lines denote boundaries of the Voronoi regions): (a)
initial configuration, (b) final configuration achieved by approach suggested
in [3]; this final configuration is suboptimal

in a local optimum can also be seen in non-convex environ-
ments (e.g. in presence of obstacles). With the motivation to
avoid such complications and to speed up the procedure of
finding the global optimum, we introduce the StaCo approach.
Adopting this approach, the majority of the swarm consists
of simple robots following local rules introduced in [3], while
one or two more advanced robots (leaders) improve the system
performance by taking different actions, taking the decisions
of the others into account. Consequently, the decentralized
behavior of the swarm and the simplicity of most robots is
preserved, while overall system performance is significantly
improved.

III. B ASICS OFSTACKELBERG GAMES

Let us explain basics of Stackelberg games by the following
static example.

Example III.1. (Two-player static game) Let two playersL
andF have decision variablesuL ∈ R and uF ∈ R, respec-
tively. Let functionsJL : R2 → R andJF : R2 → R be smooth
and strictly convex onR2. PlayerL choosesuL ∈ R in order
to minimize her costJL(uL, uF ), while playerF minimizes
JF (uL, uF ) by choosinguF ∈ R. Illustration of this situation
is given in Figure 3, where level curves (contours) ofJL and
JF are depicted in(uL, uF )-plane. If there is no hierarchy be-
tweenL andF (i.e., if they either act simultaneously or if they
do not know how the other player acts), the Nash equilibrium
applies [15]. In such a situation,L and F would picku(N)

L

and u
(N)
F , respectively, whereu(N)

L = argmin
uL

JL
(
uL, u

(N)
F

)
,

u
(N)
F = argmin

uF

JF
(
u
(N)
L , uF

)
. The outcome of the game

would beJL
(
u
(N)
L , u

(N)
F

)
and JF

(
u
(N)
L , u

(N)
F

)
for L and F ,

respectively (i.e., the values ofJL and JF evaluated at point
N =

(
u
(N)
L , u

(N)
F

)
, which is theNash solution (equilibrium)of

the game. Note that in Figure 3, pointN =
(
u
(N)
L , u

(N)
F

)
lies

on the intersection of the curvesRL(uF ) andRF (uL) defined
by ∂ JL

∂ uL
= 0 (bold dotted curve) and∂ JF

∂ uF
= 0 (bold dashed

curve), respectively.

Let us now consider a different situation: PlayerL (in
this new situation referred to asleader) knows RF (uL)
(bold dashed curve) in advance and can act first. In such
a situation it is better for the leader to chooseu(S)

L =

argmin
uL

JL
(
uL, RF (uL)

)
instead ofu(N)

L . Subsequently, fol-

lower F choosesu(S)
F (there is no otheruF for which

JF
(
u
(S)
L , uF

)
< JF

(
u
(S)
L , u

(S)
F

)
). Point S =

(
u
(S)
L , u

(S)
F

)
is

then theStackelberg solution (equilibrium)of the game and
JL
(
u
(S)
L , u

(S)
F

)
, JF

(
u
(S)
L , u

(S)
F

)
are Stackelberg outcomes of

this game for the leader and the follower, respectively [10],
[11].

We will now generalize the example. Let us state first the
assumptions that we raise on the cost functions and decision
spaces in the static game:

(A1) Let ΓL andΓF be convex compact sets, referred
to as decision spaces for the leader and follower,
respectively.

(A2) Let JL : ΓL×ΓF → ΓL andJF : ΓL×ΓF → ΓF

be strictly convex smooth functions onΓL × ΓF ,
referred to as costs for the leader and follower,
respectively.

Imposing assumptions (A1) and (A2), we provide following
definitions:

Definition III.2. (Optimal response set in the static game)
Under assumptions (A1) and (A2), the setR(uL) ⊂ ΓF

defined for each strategyuL ∈ ΓL of L by R(uL) = {ξ ∈
ΓF : JF

(
uL, ξ

)
≤ JF

(
uL, uF

)
, ∀uF ∈ ΓF } is the optimal

response setfor F.

Definition III.3. (Stackelberg strategy in the static game)
Under assumptions (A1) and (A2) and withR(uL) unique
for each uL ∈ ΓL, strategyu(S)

L ∈ ΓL is called a Stack-
elberg equilibrium strategy forL if JL

(
u
(S)
L , R(u

(S)
L )
)

=
minuL∈ΓL JL

(
uL, R(uL)

)
.

The existence and uniqueness of Stackelberg strategy is
discussed in following lemma:

JL = constJF = const

S

N

uL

uFu
(S)
F u

(N)
F

u
(S)
L

u
(N)
L

Figure 3. Illustration of the difference between Stackelberg (S) and Nash
(N) equilibrium solutions. When compared to the Nash equilibrium, under
the same conditions of the game the Stackelberg equilibriumnever leads to
higher costs for the leader (provided that they both exist).Moreover, there
are situations in which the Stackelberg equilibrium concept might be more
profitable for the follower as well, as this figure illustrates.



Lemma III.4. (Existence and uniqueness of Stackelberg strat-
egy) Every two-person static game with leaderL and follower
F , where (A1) and (A2) hold, admits a unique Stackelberg
strategy for the leader.

Proof. If ΓL and ΓF are convex compact sets andJL :
ΓL × ΓF → ΓL and JF : ΓL × ΓF → ΓF are strictly convex
smooth cost functions, thenR(uL) ⊂ ΓF by Definition III.2.
Existence and uniqueness of the Stackelberg strategy directly
follow from Definition III.3.

To conclude this short introduction, we state the obvious
property of the Stackelberg outcome.

Lemma III.5. (Stackelberg outcome versus Nash outcome
in a static game) For a two-person static game with leader
L and follower F , where assumptions (A1) and (A2) hold,
JL
(
u
(S)
L , u

(S)
F

)
≤ JL

(
u
(N)
L , u

(N)
F

)
.

If the decisions of the players and the state of the system
evolve in time, while each of these decisions and the state
of the system influence (also future) decisions and states, we
refer to the game as thedynamicgame. Without going into
too much detail, we state that theory introduced in this section
for static games can be extended into the dynamic setting,
in both discrete-time dynamic and continuous dynamic cases,
under additional assumptions on the system dynamics. For
an overview of theory of Stackelberg games with varying
information each of the players might know, see [10], [11],
[16], [17]. Moreover, a Stackelberg game can also be played
among one leaderL and multiple followersF1, . . . , FM ,
where the leader, having complete information about the state,
cost functions, and dynamics of the followers can impose her
decision on the followers at each time stepk ∈ {1, . . . , N}
(resp. each timet ∈ [0, T ]) in the discrete and continuous case,
respectively.

IV. STACO APPROACH

In this section we formulate multi-robot coverage problem
as a dynamic Stackelberg game with one leader and multiple
followers. The approach proposed in this section will be
referred to as StaCo: Stackelberg-based Coverage Approach.

Let us considerM robots (players) positioned at timet = 0
in convex polytopeΩ ⊂ R2. One of the players, denoted
for the sake of simplicity as player1, is the leader, other
players, denoted by2, . . . , M, are thefollowers. Let x(t)

def
=

{x1(t), x2(t), . . . , xM (t)} be the configuration of the robots
at time t, with t ∈ [0, T ], x(0) = {x1(0), x2(0), . . . , xM (0)}
being the a priori given initial configuration of the robots
and x(T ) = {x1(T ), x2(T ), . . . , xM (T )} being their final
configuration at final timeT, with xi(t) 6= xj(t) if i 6= j. Let
Vi(t) indicate the Voronoi region (cell) in whichi-th robot is
located at timet. For eachx(t) the Voronoi regions are defined
by the Voronoi partition of Ω, V(t) = {V1(t), . . . , VM (t)}
generated by the pointsx(t) =

(
x1(t), . . . , xM (t)

)
: Vi(t) =

{ω ∈ Ω : ‖ω − xi(t)‖ ≤ ‖ω − xj(t)‖, ∀j 6= i}. System
dynamics (with state variablex) are given by the following
system of ordinary differential equations:

ẋi(t) = ui(t), i = 1, . . . ,M (1)

whereui(t) is the control (decision) of thei-th robot at timet.
The cost functions for the leader (robot 1) at timet is given
by

C1(t) =
∑

i∈{1,...,M}

∫

Vi(t)

‖ω − xi(t)‖2dω. (2)

Let T be the stopping time, i.e. the minimal time such that
for eachτ > T the costC1(τ) does not change:T = min{t :
C1(τ) = C1(T ) for ∀ τ > T }. Then the leader minimizes
C1(T ). The cost function for the followerj ∈ {2, . . . ,M} at
time t is

Cj(t) =

∫

Vj(t)

‖ω − xj(t)‖2dω. (3)

The problem of the leader (robot 1) can be then defined as

(PStaCo)





Find u
(S)
1 (t) = argmin

u1(t)

C1(T ), w.r.t.

uj(t) = argmin
uj(t)

∫
Vj(t)

‖ω − xj(t)‖2dω.

ẋi(t) = ui(t),

with j = 2, . . . , N, i = 1, . . . , N.

The solution strongly depends on the so-called information
pattern, i.e., on the amount of information that each player
knows and recalls over her own state, state of the others, and
action made by herself and the others during the game.

Proposition IV.1. Let at time t each playeri know only
statexi(t) and correspondingVi(t) and let Hessian of(2) be
positive definite at eacht. Then the so-called continuous-time
Lloyd descent [3]

u∗
i (t) = κ

(∫
Vi(t)

xdxi∫
Vi(t)

dxi
− xi(t)

)
, (4)

κ > 0, asymptotically converges to minimalC1(T ) for player
1 and to minimalCj(T ) for j = 2, . . . ,M.

Proof: As shown in [3],u∗
i (t) defined by (4) with respect

to żi(t) = ui(t) converges asymptotically to the set of critical
points of (2). The critical points of (2) coincide with critical
points of (3). If correspondingVi is finite, this solution is
global due to positive definiteness of (2) [18].

Remark IV.2. Note that validating the positive definiteness of
(2) is an open problem [3] and even if the convergence to the
global optimum is guaranteed, in general no guarantees on the
speed of this convergence exist. This leads us to the question
whether there exist algorithms that perform better than the
classical Lloyd algorithm if we allow the leader (robot 1) to
have more information about the state and decisions of the
followers.

Proposition IV.3. Let player 1 knowxj(τ) anduj(τ) (for all
j 6= 1) for τ ∈ [t, t+∆], with ∆ > 0, whereuj(t) is defined by
(4). Letu(S)

1 (t) denote the optimal control of player1, possibly
dependentent onuj(τ), τ ∈ [t, t+∆]. Let T∆, andC∆

1 (T∆)
denote the corresponding stopping time and the final payoff
for player 1 in such a situation, respectively. ThenT∆ ≤ T
andC∆

1 (T∆) ≤ C1(T ).

Proof: The leader’s decision is not bounded by any
restrictions. Setting this decision to (4) leads toT∆ = T ,



C∆
1 (T∆) = C1(T ). Note that the Hessian of (2) might not be

positive definite with the leader’s decision defined by (4). Thus,
u∗,S
1 (t) either coincides with (4) or, if this choice would lead

to only sub-optimal solution,u∗,S
1 (t) differs from (4) and leads

to a better outcome. This result also follows from extensionof
Lemma III.5 into dynamic setting with the state equation (1).

Giving more information to the leader almost always leads
to the better outcome for the leader also in a very general
setting [10], [11], while the StaCo approach never leads to
the outcome worse than that reached by standard methods [3].
In the next section we will illustrate that when the classical
Lloyd algorithm fails and leads to only a local optimum, the
StaCo approach can find the global solution. For the case
studies in the next section, the time and space are discretized
and therefore the leader can choose from a limited number of
decisions at each time stepk.

V. CASE STUDIES

In this section, we will study the performance of the
proposed StaCo approach in comparison with the classical
Voronoi-based coverage approach.

A. Simulation Setup

To simulate StaCo and compare it with the standard
approach, we have developed a 2D robot simulator. This
simulator is written in Java and supports simple massless robot
motion. The environmentΩ to be covered in all simulations
is a 8 m × 8 m square and the speed of each robot is limited
to 4 cm/s. The time discretization of the system is0.4 s.

The designed simulator supports Voronoi cell computation
for each robot. In each time step, firstly the locations of robots
x are used to compute the Voronoi cell of each robot and
subsequently the centroid of each cell is computed and used
by the robots to find the gradient descent direction (4). With
the StaCo approach the robot closest to the center ofΩ is
considered as the leader. In each time step, instead of following
the gradient descent direction (4), the leader first discretizes its
surrounding space into a limited number of accessible locations
(in our simulations 8 points on a circle of radius1.5 cm, with
equal distances to each other). Then for moving to each of
these locations, the leader predicts the possible moves of other
robots, in one or two time steps, and chooses the movement,
which minimizesC1 (i.e. the best possible response to the
other robots).

In order to measure the performance of the StaCo approach
and to compare it with the performance of the classical
coverage techniques, we introduce theSettling Timeas the
time required for the cost function (2) of the whole swarm to
enter and remain within a prespecified error boundary. More
precisely, we define the settling timeTs as

Ts
def
= min

{
Ts ∈ [0, Tf ]

∣∣∣∀t > Ts :
∣∣∣ C1(Tf )−C1(t)
C1(Tf )−C1(0)

∣∣∣ < ǫ
}

(5)

whereǫ = 0.05, C1 is defined by (2), andTf is the simulation
stopping time, i.e. the minimal time such that the costC1(.)
doesn’t change.

As an example of the simulation setup, Figure 4a shows
an initial configuration of a robotic swarm of8 robots. Both
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Figure 4. Comparison of performance of the proposed StaCo approach and
the standard approach for a particular configuration: (a) initial configuration
(b) final configuration (c) coverage cost function (d) cost function summed up
over time.

the StaCo and the classical coverage approaches are appliedto
this configuration; with the StaCo approach the leader makes
a prediction of the swarm behavior for one subsequent time
step. The final configuration after170 s is shown in Figure 4b.
Clearly, both methods reach the same final configuration;
however, as shown in Figure 4c, StaCo reaches the final
configuration faster than the classical approach. Finally,in
Figure 4d, the cost functions for both techniques are summed
up over the time. This figure shows that the StaCo approach
converges to the optimal configuration faster than the classical
approach. The settling time of both approaches can be easily
measured via the horizontal lines in Figure 4c (The upper and
lower lines refer respectively toC1(Ts) and C1(Tf ), which
denote the0.05 error bound). Therefore, in this particular case
study, the settling time for the StaCo approach is75 s, and for
the classical coverage approach it is105 s.

B. Effect of Swarm Size

In order to compare both techniques in a more generic way,
we have applied our simulation to groups of2 – 20 robots,20
times for each swarm size, with random starting configurations.
The convergence settling times for both techniques were accu-
rately measured based on (5). Their statistical representation
is illustrated in Figure 5. In this figure, the average value,the
minimum, and the maximum of the settling time over20 runs
are plotted with respect to the swarm size. From Figure 5
we can conclude that the StaCo approach performs better
compared to the classical coverage approach. For certain initial
configurations both methods achieve the final configuration
with the same settling time, while for the majority of possible
initial configurations the StaCo approach performs better.Such
behavior is observed in simulations and is also supported by
the theoretical arguments in Sections III and IV.
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C. Effects of Leader’s Speed and Prediction Horizon

Firstly, we examine the effect of the leader’s speed on the
performance of StaCo. Secondly, we will investigate how the
number of prediction steps influences the performance.

We employ a robotic swarm with eight robots. For each
initial configuration, we increase the speed of the leader from
4 cm/s up to16 cm/s in steps of2 cm/s, while the followers’
maximum speed remains4 cm/s. Each simulation is repeated
20 times from random initial configurations. Afterwards, the
simulations are repeated with the leader’s prediction horizon
being increased to up to2 subsequent time steps, with varying
leader’s speed.

The results presented in Figure 6 show that increase of
the leader’s speed and prediction horizon can improve the
convergence performance of the StaCo approach.
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Figure 7. Comparison of coverage performance between the proposed StaCo
approach and the standard coverage approach for an initial configuration close
to a sub-optimal configuration: (a) initial configuration; (b) final configuration
for standard coverage approach; (c) final configuration for the StaCo approach;
(d) comparison of the cost functions.

D. Escaping sub-optimal configurations

In StaCo approach the leader is able to perceive global
information about the position of all swarm robots. This ability
may help the swarm to escape from sub-optimal configurations.
A sample initial configuration, already discussed in Section II,
is shown in Figure 7a.

This initial configuration is very close to a suboptimal
case, which is achieved if each robot moves a bit up or
down and settles in the center of its rectangular Voronoi cell.
Although the classical coverage approach terminates in this
local minimum immediately (see Figure 7b), it is very easy
for the StaCo approach to escape from this local minimum.
The final configuration achieved by the StaCo is shown in
Figure 7c. Comparison of costs over the time are illustratedin
Figure 7d. Clearly, the StaCo approach performs much better.

Similarly to the results depicted in Figure 7, starting
from any other initial configuration close to a sub-optimal
configuration, the standard coverage approach will result in this
sub-optimal position. The perception capabilities of the leader
in StaCo allow for finding the globally optimal configuration.

VI. D ISCUSSIONS ANDCONCLUSIONS

This article addressed the multi-robot coverage problem
and presented a new approach called StaCo, which is based
on the game-theoretic concept of Stackelberg games. StaCo
takes advantage of the high perception capabilities of a small
group of robots (leaders) among a large group of simple
robots (followers) and allows for a very efficient coverage
performance. No communication among the robots takes place.
The leader(s) choose(s) a position in such a way that the other
robots will, by optimizing their own objectives, improve the



overall configuration of the system. Therefore, this approach is
a non-intrusive way to steer the system into a desirable direc-
tion and leads to fast and effective coverage of an environment.

StaCo always performs at least as well as the classical
approach, mostly StaCo performs better. This outcome was
shown both theoretically and by means of case studies. More-
over, StaCo is able to escape from sub-optimal configurations
when the classical approach is doomed to fail.

A possible limitation of the StaCo approach is that cur-
rently there is no explicit form of the optimal Stackelberg
solution of the game due to the complexity of the cost function
of the leader; however, its derivation is a subject of our ongoing
research.

StaCo opens a promising new research avenue: Using het-
erogenous robotic swarms for coverage in complex scenarios
such as those with non-convex environments (environments
with obstacles or with non-convex boundaries). As described in
many existing works, accomplishing a swarm robotic mission
in a non-convex environment is a difficult task. However, the
authors believe that the StaCo approach can be very successful
in such scenarios.
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[17] K. Staňková and B. De Schutter, “Stackelberg equilibria for discrete-
time dynamic games – Part II: Stochastic games with deterministic
information structure,” inProceedings of the 2011 IEEE International
Conference on Networking, Sensing and Control, (Delft, The Nether-
lands), pp. 255–260, Apr. 2011.

[18] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoitessellations:
applications and algorithms,”SIAM Review, vol. 41, no. 4, pp. 637–676,
1999.


