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ABSTRACT 
In this paper the dynamic optimal toll design problem as a game of the Stackelberg type is investigated, 
with the road authority as a leader and drivers of the road network as followers. The road authority sets 
tolls on some links in the network such as to minimize total travel time of the system, while in each time 
instance the travelers choose their routes so as to minimize their own perceived travel costs. We assume 
that only proper subset of links can be tolled (second-best tolling). Two types of problems are studied: 
The “classical” Stackelberg game with the road authority imposing constant or time-varying toll and, as a 
true extension, the so-called “inverse Stackelberg game” with the road authority setting toll as a function 
of traffic flows in the network. In both situations the drivers are assumed to choose their routes in 
accordance with the dynamic logit-based stochastic user equilibrium. We formulate the dynamic optimal 
toll design problem with flow-dependent second-best tolling and present a solution algorithm. This 
algorithm will be applied in a small case study, where the tolls are affine functions of link traffic densities 
on tolled links. Even with this rather simple tolling one can improve the system performance remarkably. 
The results of flow-dependent tolling (Inverse Stackelberg) can never be worse than those of the tolling 
independent of traffic flow (Stackelberg). In some situations the optimal second-best flow-dependent toll 
can be decreasing with traffic flow. These phenomena will be discussed as well.  
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1 INTRODUCTION & LITERATURE OVERVIEW  
 

Traffic congestion has become a big problem, especially in heavily populated metropolitan areas. With 
increasing occupancy of the road networks, the problem of congestion becomes more and more actual. 
Common methods used to alleviate congestion (such as improvements of junctions, broadcasting road 
conditions via traffic reports, building new roads and widening of existing ones, etc.) might be expensive, 
difficult to apply, and not very efficient.  When it is not easy to apply the standard methods, traffic 
congestion can be reduced by imposing appropriate tolls, in a road pricing scheme. Road pricing has 
received a lot of attention in both research (e.g., (1), (2), (3), (4), (5)) and practice (6).  

The idea of reducing congestion via appropriate tolls led to the introduction of the so-called 
optimal toll design problem ((2), (7)). This optimal toll design problem is a problem of the Stackelberg 
type ((8), (9)), applied to the traffic environment with a road authority as a leader and travelers as 
followers. The aim of the road authority is to minimize its objective function, which is dependent on the 
travelers' decisions, by choosing optimal tolls for a subset of links (so-called tollable links), while the 
travelers minimize their individual travel costs. Their behavior is usually modeled by applying a traffic 
assignment ((10), (11)). The traffic assignment (TA) consists of determining the routes used by network 
users, taking into account the link tolls.  

There are extensive studies focusing on static optimal toll design problem, i.e., on problems, 
where decisions of the players (travelers and the road authority) do not evolve in time ((1), (2)). Although 
static models are still widely used, the theory and practice of dynamic models have evolved significantly 
over the last 10 years. In the dynamic version of the optimal toll design problem the dynamic traffic 
assignment (DTA) applies. DTA models typically describe route choice behavior of travelers on a 
transportation network and the way in which traffic dynamically propagates through the network.  

If the travelers are assumed to have perfect information, the deterministic user equilibrium (DUE) 
applies (12), both in dynamic and static optimal toll design problem. Similarly, with imperfect 
information, the stochastic user equilibrium (SUE) is applied, for example a logit-based stochastic 
equilibrium (LB-SUE), see (13).  

Considering possible tolling strategies there are two main research streams differing in the 
definition of the set of tollable links.  With so-called first-best pricing all the links in the network can be 
tolled ((14), (15), (16)), with so-called second-best pricing not all links are tollable ((1), (17)). The latter 
concept is clearly more applicable in practice.  

Dynamic congestion pricing models in which network conditions and link tolls are time varying, 
have been addressed in (18), where the effectiveness of various pricing policies (time-varying, uniform 
and step tolls) was compared as well. Only a bottleneck or a single destination-network is considered. 
Possibility of application of traffic-flow dependent tolls is not discussed here. In (19) and (20) dynamic 
marginal (first-best) cost pricing models for general transportation networks were developed. As indicated 
by the authors, the application of their model is limited to destination-specific (rather than route or link-
based) tolling strategies, which might complicate its practical application. Moreover, only the first-best 
pricing is considered here.  

Following extensive case studies of two-route congestion problem in static networks ((4), (21), 
(22)), we have introduced its (second-best) dynamic variant, where the link tolls are functions of link or 
route flows in the network, for only a proper subset of all links. This fits within the theoretical framework 
of “inverse Stackelberg” problems ((8),(23)). In (24) we have considered the dynamic optimal toll design 
problem with the road authority minimizing the total travel time of the system and travelers driven by 
DTA. We have solved the problem analytically for a 2-link network, also for the dynamic case. We have 
found out that the flow-dependent toll brings better results to road authority than the uniform or time-
varying tolls.  
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This paper introduces an extension of our recent research to general networks. To the best of our 
knowledge, no research dealing with the dynamic optimal toll design problem with the second-best 
tolling, the travelers driven by LB-SUE, and the aim to find optimal toll defined as a function of the 
traffic flows in the network has been done before. Some authors (e.g., (18), (26), (27), (28)) consider the 
step-wise second-best tolling, though. In (7) the dynamic optimal toll design problem is considered with a 
case study on a very small network. Tolls are assumed uniform or time-varying, but traffic-flow-invariant, 
and the problem of finding the optimal toll is defined, but not solved here, albeit the impact of some 
specific toll values on travelers' route and departure time choices is presented.  In (1) and (17) the static 
second-best tolling is considered, travelers are driven by deterministic user equilibrium (DUE), the 
objective function of the road authority is defined as the surplus of the network, the traffic demand is 
elastic, and it is assumed that the link cost functions are increasing with respect to traffic flows. In (16) a 
very general static Stackelberg model is presented, where the road authority has two decision variables, 
one of them possibly traffic-flow-dependent. The paper itself deals with general mathematical properties 
of traffic equilibria, however. The tolls are assumed to be constant and the traffic-flow-dependent variable 
is interpreted as management decisions of the road authority. 

The contributions of the paper can be listed as follows:  
• The dynamic second-best optimal toll design problem with the traffic flow-dependent tolling is 

formulated. Up to now flow-dependent tolling appeared in static networks, in heuristic studies, or 
with the first-best pricing only.  

• A simple algorithm solving the problem is introduced and presented on a small case study. This 
algorithm is applicable to general networks.  

• We show that the flow-dependent tolling can never be worse than the flow-independent one.   
• Phenomena of optimal toll decreasing with traffic flow is presented and discussed.   
• Introduction of second-best flow-dependent tolls in dynamic optimal toll design problem is very 

promising for practical applications. This topic is discussed here as well.  
Some simplifying assumptions are made in this paper. For example, the travelers are assumed to be 
uniform, and they make route choices, but do not choose their departure times. Models with flow-
invariant tolling, where the travelers choose their departure times as well, are discussed in e.g. (7), (18). 
The currently used model is sufficient for our research purposes and can be extended after the role of 
flow-dependent toll is elaborated in more detail. 

This paper is composed as follows: In Section 2 we will introduce a basic concept of Stackelberg 
and inverse Stackelberg games, mainly by means of examples. In Section 3 the optimal toll design 
problem is presented, including some properties and examples of interesting phenomena, which could be 
explained analytically. In Section 4 the algorithm used for solving the problem is described. In Section 5 
we show the case studies on a small network.  The outcome of the Stackelberg game is compared with 
that of the inverse Stackelberg game. Conclusions and future research are discussed in Section 6. 

 
2 STACKELBERG AND INVERSE STACKELBERG GAMES  

 
Let us consider two players, which we call leader and follower. The leader has the decision variable 

, while the follower has the decision variable ℜ⊂∈ LL Du ,ℜ⊂∈ FF Du , where and  are the 
decision spaces of the leader and the follower, respectively, and 

LD FD
ℜ  is the set of real numbers. The leader 

and the follower have the real-valued cost functions ( ) ( )FLFFLL uuJuuJ ,,, , respectively.  We assume 
that the cost functions as well as  and  are known to both players. LD FD
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Each player chooses his own decision variable in such a way as to minimize his own cost 
function. Some well-known equilibrium concepts, such as the Stackelberg equilibrium concept (see (8)), 
can be used to define a solution. With the Stackelberg equilibrium concept the leader announces his 
decision , which is subsequently made known to the other player, the follower. With this knowledge 
the follower picks . Hence,  becomes a function of , written as 

Lu

Fu Fu Lu ( )LFF uu ρ= , which is 
determined through the relation 

( ) ( )( ).,,min LFLFFLFu
uuJuuJ

F

ρ=   

It is assumed that this minimum exists and that it is unique for each possible choice   by the leader. 
The function 

Lu
( )⋅Fρ  is sometimes called a reaction function (it indicates how the follower will react upon 

the leader's decision). Before the leader announces his decision  he will realize how the follower will 
react; hence, the leader will choose, and subsequently announce  so as to minimize 

Lu

Lu ( )( )LFLL uuJ ρ, . 
 
Example 1. 
 
Suppose  

( ) ( ) ( ) FLFLFLFFLFLL uuuuuuJuuuuJ −+=−+= 2222 ,,5, .  

Trivially, the reaction curve is ( ) LLFF uuu
2
1

== ρ .  Hence, the leader will choose  so as to minimize Lu

⎟
⎠
⎞

⎜
⎝
⎛

2
, L

LL
uuJ ,  which immediately results in 2=Lu . With this decision of the leader, the follower will 

choose . The costs for the leader and the follower are given by  and 3 ,  respectively. 1=Fu 20
In Figure 1 the important contours of the leader's and the follower's cost functions and the reaction curve 
of the follower are depicted. Point ( ) ( )1,2, =FL uu  is the closest point to the point ( ) ( )0,5, =FL uu  
(minimum of ) that lies on the reaction curve of the follower. ( FLL uuJ , )

 
FIGURE 1 Graphical illustration of Example 1 

□ 
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Another equilibrium concept, to be dealt with now, is the  inverse Stackelberg equilibrium 
discussed in, e.g., (23) and (24). The leader does not announce the scalar , as above, but a “decision 
rule” given by the function 

Lu

LFL DD →⋅ :)(ρ . 
Examples of games of this type: 

• The leader is the government and the follower is a citizen. The government demands from the 
citizen taxes dependent on the income  of the citizen. It is up to the citizen as to how much 
money he will earn. The income tax the government will receive equals 

Fu
( FL u )ρ , where the “rule 

for taxation” )(⋅Lρ   was made known ahead of time. 
• The leader is a producer of electricity in a liberalizing market and the follower is the market (a 

group of clients) itself. The price of electricity is set to ( )FL uρ , where  is the amount of 
electricity traded. 

Fu

• The leader is a road authority and the followers are travelers on the road network. Travelers make 
their travel decisions so as to minimize their travel costs. These travel costs consist of a travel-
time dependent part and link tolls, to be paid by travelers using tolled links and imposed by the 
road authority as functions of the traffic flows in the network, . The road authority minimizes 
the total travel time of the network by setting tolls on tollable links. These tolls 

Fu
( FL u )ρ , defined 

as mappings of the link traffic flows in the network, are announced in advance. 
This problem is the main subject of this paper and will be discussed from Section 3. Since this 

game involves many followers, an additional item to be discussed is how the followers will react to each 
others' decisions. 

To recapitulate, in a Stackelberg setting, the leader announces and acts first and subsequently acts 
the follower. In an inverse Stackelberg setting, however, while the leader announces his “decision rule”, 
the follower acts first and the leader second. 

Given the function )(⋅Lρ  the follower (in this section we assume one follower) will make his 

optimal choice   according to *
Fu

( )( )FFLF
u

F uuJu
F

,minarg* ρ= . (2) 

The leader, before announcing his )(⋅Lρ ,  will realize how the follower will play and he can exploit this 
knowledge in order to choose the best possible Lρ -function, such that ultimately his own cost function 

 is minimized. Symbolically, we could write LJ
( )

( )
( )( ) ( )( ))(,)(minarg *** ⋅⋅=⋅

⋅
LFLFLLL uuJ

L

ρρρρ
ρ

. (2) 

In this way one enters the realm of composed functions (see 30) which is known to be a notoriously 
complex area. From here onward it turns out to be difficult to proceed in an analytic way. However, there 
is a trick that sometimes works, as shown in the following example.  
 
Example 2. 
 
Suppose that the cost functions are those of Example 1. If both the leader and the  follower would be so 

kind and minimize , the follower totally disregarding his own cost function, the leader would 
obtain   

( FLL uuJ , )

( ) ( ) .05,0,min
,

== LFLLuu
JuuJ

FL .  
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This value is called the team minimum.  Now the leader should choose the curve )(⋅= LLu ρ  in such a 
way that the point ( )  lies on this curve and, moreover, that this curve does not have other 
points in common with the set 

( 0,5, =FL uu )

( ) ( ) ( ){ }5,0,:, FFLFFL JuuJuu ≤ .  
To keep the problem simple a linear curve satisfying this property is chosen. Clearly, there exists only one 
line satisfying the required conditions and it is line  

( ) .102 −== FFLL uuu ρ   
With this choice of the leader, the best for the follower to do is to minimize  

( )FFF uuJ ,102 − ,  
which leads to  The situation is depicted in Figure 2.  Hence .5=Fu 0=Lu  and, interestingly, the leader 
obtained his team minimum in spite of the fact that the follower minimized his own cost function (though 
with the constraint ( ) 102 −== FFLL uuu ρ . The costs for the leader and the follower will be 0 and , 
respectively. Compared with Example 1, the leader is much better off (

25
200 < ) while the follower is 

worse off ( ). 325 >

 
FIGURE 2 Graphical illustration of Example 2 

 
□ 
 

In this notion, a “classical” Stackelberg game is a special case of an inverse Stackelberg game 

with ( )⋅Lρ  chosen as a constant value. 
Other examples exist in which the leader cannot obtain his team minimum, and such problems are 

harder to deal with, but the advantage of use of the inverse Stackelberg strategy will stay the same as in 
our example.  

In the following sections we will formulate the Dynamic optimal toll design problem as an 
inverses Stackelberg game with tolls dependent on traffic flows.  
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3 DYNAMIC OPTIMAL TOLL DESIGN PROBLEM 
 
3.1 Preliminaries  
 
Let  be a road network, where  and ),( ANG = N A  are finite nonempty sets of nodes and directed arcs 
(links), respectively.  Let AT ⊂  be a set of tollable links, initially given. Let K ( ℵ∈K ) be the set of 
time instances. The set of tollable links will be denoted by AT ⊂ . There is a set of origin-destination 
pairs  For all ordered pairs of nodes .NNRS ×⊂ ,),( RSsr ∈  where r  is an origin,  is a destination, 
and for each time instance  there is a positive travel demand on travelers  [veh]. The 
network is assumed to be strongly connected, that is, at least one route connects each - pair. Let 

s
,Kk ∈ ksrd ),,(

),( sr P  
be the set of all simple paths (i.e., paths without cycles) in the network and let PP sr ⊂),(   be the set of 
all paths (routes) between origin-destination pair  An element of ).,( sr P  will be denoted by p , an 
element of ),( srP  will be denoted by  The travel cost on route.),( srp p , respective , as experienced 
by an individual user entering this route at time instance , will be referred to as to  and , 
respectively, similarly the travel times at time instance  will be denoted by  and  respectively. 
The dynamic route flow rate on the route  at time instance  will be denoted by  similarly 
the dynamic route flow rate on the route 

),( srp
k k

pc ksr
pc ),,(

k k
pτ ,),,( ksr

pτ
),( srp k ,),,( ksr

pf
p  at time instance k  will be denoted by  .k

pf
For each link  in network G the following parameters are initially given: link length 

[km], maximum speed [km/h], minimum speed [km/h], critical speed [km/h], jam 

density [pcu/km], and the unrestricted link capacity [pcu/h]. The link travel time [h] on link 
 for an individual user entering this link at time instance k can be computed as   

a A∈

as max
aϑ

min
aϑ

crit
aϑ

jam
aJ aC k

aτ
Aa∈

,k
a

ak
a

s
ϑ

τ =  (1) 

where is a speed of travelers entering link  at time instance  defined by the Smudlers speed-
density function: 

k
aϑ a ,k

 

( )

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−

−
−+

−
+

=

,

,11

11

,

min

min

max
max

a

jam
a

crit
a

jam
a

k
a

a
crit
a

jam
a

k
acrit

a

a
crit
a

a

k
a

JJ

JJJ

J
J

ϑ

ϑϑ

ϑϑϑ

ϑ  (2) 

if   ,crit
a

k
a JJ ≤

if   ,jam
a

k
a

crit
a JJJ ≤≤

if   .jam
a

k
a JJ ≥

The critical density can be computed as crit
aJ .crit

a

acrit
a

CJ
ϑ

=  

The dynamic link cost on link  as experienced by a single traveller entering this link at time instance k  
is defined as  

a

,k
a

k
a

k
ac θατ +=  (3) 

whereα is travelers’ value of time [veh/h] and   is the link toll set by the road authority on link  at 

time instance k .  The dynamic route travel time  [h] is assumed to be additive, i.e.,  

k
aθ a

k
pτ
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,,
,

k
a

Aa Kk

kk
pa

k
p

′

∈ ∈′

′ ⋅= ∑∑ τδτ  (4) 

where   is a dynamic route-link incidence indicator defined as  kk
pa
′,

,δ
 

⎩
⎨
⎧

=′
,0
,1,

,
kk
paδ  (5) 

otherwise.  
if travelers departing at time inst.  reach link a  at time inst.  k ,k′

 
Similarly, we assume that the dynamic route tolls and the dynamic route costs are additive, i.e.,  

',
,

k
a

Aa Kk

kk
pa

k
p θδθ ⋅= ∑∑

∈ ∈′

′ , (6) 
k
a

Aa Kk

kk
pa

k
p cc ′

∈ ∈′

′ ⋅= ∑∑ ,
,δ . (7) 

On the other hand, the dynamic link flow rates  are additive with respect to dynamic route flow rates, 
i.e., 

k
aq

.,
,

k
p

Aa Kk

kk
pa

k
a fq ′

∈ ∈′

′ ⋅= ∑∑δ  (8) 

The route flow rates have to satisfy the flow-conservation constraint given as   
,),(,),,(),,(

),(),(

RSsrdf ksr

Pp

ksr
p
srsr

∈∀=∑
∈

 (9) 

as well as the non-negativity constraint given by 
.),(,,,0 ),(),(),,( RSsrPpKkf srsrksr

p ∈∀∈∀∈∀≥  (10) 

The set  defined as  kQ

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈∀∈∀≥== ∑
∈

RSsrPpfdfffQ srsrksr
p

ksr

Pp

ksr
p

kk
def

k

srsr
P

),(,,0,:,, ),(),(),,(),,(),,(

),(),(
||1

K  (11) 

will be called the set of feasible route flow rates at time instance .  Here k ( )Pkkk
P

QQQ 0
1 +ℜ⊂××= K , 

where for each feasible route flow on route p  at time instance  it follows that  k .k
p

k
p Qf ∈

 
The link dynamics is defined by the Dynamic network loading (DNL) model. The DNL model is 
formulated as a system of equations expressing link dynamics, flow conservation, flow propagation and 
boundary constraints. This DNL model is adopted from (28) and is not further discussed here.  
 
3.2 Travelers’ behavior  
 
Travelers entering the network at each time instance minimize their perceived travel costs. We assume 
that in equilibrium state, any traveler at any time instance cannot minimize his perceived travel costs by 
unilateral change of his route. This situation fits within the frame of dynamic stochastic user equilibrium 
model (See (29)), which can be written as 

k

,),(),,(,),,(),,(),,( RSsrsrpdf ksrksr
p

ksr
p ∈∀∈∀⋅Ψ=  (12) 

where  determines the probability that route is perceived as the cheapest, given 
actual travel times (see (10)) and is dependent on the vector of route costs between the -pair at time 
instance  In this paper the dynamic logit-based stochastic user equilibrium (LB-SUE) in which  
is defined as 

]1,0[),,( ∈Ψ ksr
p

),( srp
),( sr

.k ksr
p

),,(Ψ
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( )
( )∑

∈′

′
′−

−
=Ψ

),(

),,(

),,(
),,(

exp
exp

srPp

ksr
p

ksr
pksr

p c
c
µ

µ
, (13) 

is used. In (7) the parameter µ  is a positive parameter associated with the random cost component. If the 
value of µ is large, the perception error is small, and travelers will tend to choose minimum-cost routes. 
The costs perception tends towards being accurate as ∞→µ , which then simplifies to the dynamic 
deterministic route choice equilibrium assignment (See (29)).  
 
3.3 The  aim of the road authority 
 
In the inverse Stackelberg setting the road authority sets tolls as mappings of traffic flows in the network. 
We assume that these tolls are twice continuously differentiable functions of the link flows. The road 
authority sets at each time instance vector of the link flows ))(,),(()( 1 ⋅⋅=⋅Θ k

A
kk θθ K  in such a way as to 

minimize the total travel time of the system. Each  is a function from  into .  The sequence 
of all vectors )  will be denoted by 

)(⋅k
aθ

kQ 0
+ℜ

(⋅Θk )(⋅Θ , i.e.,  ( ).)(,),()( 1 ⋅Θ⋅Θ=⋅Θ K
K  Moreover,   

( ) ( ) .,\0,,,0
 

KkTAaqKkTaQqq k
a

k
a

k
a

k
a

k
a

k
a ∈∀∈∀=∈∀∈∀∈∀≥ θθ

 (14) 

 
With travelers driven by LB-SUE the problem boils down to finding a vector of continuously 
differentiable functions  such that  )(* ⋅Θ

∑ ∑ ∑
∈ ∈ ∈⋅Θ

⋅=⋅Θ
Kk RSsr Pp

ksr
p

ksr
p

sr

f
),(

),,(),,(

)(

*

),(

,minarg)(
 

τ  (15) (P) 

 
subject to (1)-(4), (7)-(10),(14), and 

 
( )
( ) RSsrsrpd

c
c

f ksr

Pp

ksr
p

ksr
pksr

sr

p
∈∀∈∀⋅

−
−

=
∑
∈′

′
′

),(),,(,
exp

exp ),,(
),,(

),,(
),,(

),(

µ
µ

. (16) 

 
Clearly, the uniform or time-varying problem is a specific case of (P). In that situation the tolling 
functions  are defined as constants, i.e., for each  there would be a nonnegative constant such 
that  

( )⋅k
aθ k kβ

 ( ) .0
+ℜ∈= k

def
k
a

k
a q βθ  (17) 

This means that the Stackelberg game within the framework dynamic optimal toll design problem is a 
special case of the inverse Stackelberg game within the same framework (with the same initial 
conditions). In other words, the result of the Stackelberg game can never be better than that of the inverse 
Stackelbrg game, provided that the initial conditions are the same for both games. This result is not 
surprising since it follows from Section 2. 
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3.4 The problem  
 
We are looking for the solution of problem (P). The comparison of the traffic-flow dependent tolling 
outcome with outcomes of traffic-flow-invariant tolling and no tolling is also subject of our research. 
Brief discussion about the properties of the total travel time function will take place as well.  
 
 
4 SOLUTION APPROACH 
 
In this section we will present an algorithm to solve the problem. Network , set ),( ANG K , and travel 
demands   are initially given, as well as the set of routes )(),( kd sr P , maxε  ( 10 max <<< ε ), the set of 
tollable links AT ⊂ , and a finite set  of possible tolling functions, where . Ω k

Kk∈ The algorithm has built-in two optimization procedures: outer loop and inner loop.  
Ω∪=Ω

 In the outer loop the road authority minimizes the total travel time of the system by setting tolling 
functions on the tollable links. The tolling function from Ω  that is minimizing the total travel time of the 
system, is taken as an optimal strategy for the road authority.   
 In the inner loop the dynamic route choice model, aiming to determine a stochastic dynamic user-
equilibrium based on the actual route travel costs, is applied. In each iteration, new route flow proportions 
over route set rsP  are computed using a dynamic logit model. This gives new route flow rates  
that are passed on to the dynamic network loading (DNL) model. In order to speed up convergence, the 
method of successive averages (MSA) is adopted on the route flow level (See (10).): 

)(kf rs

( )( ),)1(,),,(),,()(,,,)1(,),,()(,),,( −− −Ψ+= iksrksriksr
p

iksriksr
ppp

fdff δ  (18) 
where steplength δ  is set to ,  is the route flow rate on route  at time instance  
for the i-th iteration,  is the probability that the route 

3/2−i )(,),,( iksr
pf ( )srp , k

( ) )(,,, iksr
pΨ ( )srp ,  is perceived as the cheapest at 

time instance  the i-th iteration,  is the travel demand for the -pair at time instance 
. Formula (13) is used for its computation.  

k ksrd ),,( ),( sr
k

 The dynamic network loading (DNL) model simulates the route flows  along the links 
in the network. This model is at the heart of the DTA model and is also the most computationally 
intensive part. The convergence criterion of the DTA is reached using the relative dynamic duality gap 
function  defined for the i-th iteration as: 

)(),( kf sr

)(iε
 

 ( )
( )

∑
∑ ∑

∈

∈ ∈

⋅

−
=

RSsr

sriksr
RSsr Pp

iksr
p

iksriksr
p

i

d

fc
srsr

),(

),()(,),,(
,

)(,),,()(,),,()(,),,(

)( ),(),(

π

π
ε . (19) 

Here  is a minimal route travel time between the )(,),,( iksrπ ( )sr, -pair at time instance  for the i-th 
iteration,  is the cost on route 

k
)(,),,( iksr

pc ( )srp ,  at time instance  for the i-th iteration, similarly 
 is the route flow rate on route 

k
)(,),,( iksr

pf ( )srp ,  at time instance  for the i-th iteration. k
 
 If the duality gaps of two consecutive iterations are close enough, i.e., if ( ) ( )

max
1 εεε <− −ii , the 

algorithm is terminated. Here maxε  is a positive number close to zero defined beforehand. The scheme of 
the algorithm is depicted in Figure 3.  
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Remarks: 
• The algorithm is trivially convergent, if the set Ω  is finite. If the set Ω  is infinite, the problem is 

NP-hard. The convergence of the inner loop of the algorithm was shown in, e.g., (29). 
• The solution of the problem is generally non-unique, which trivially follows from the problem’s 

definition. The uniqueness would be satisfied only if the link and route costs would be strictly 
increasing with the traffic flow rates. 

• The outer level of the algorithm has to be specified with respect to the properties of .  Ω
 
 

 

 
 
 

Step 1: Initialization     
Download , define ),( ANG K , ,  , RS ,T )(),( kd sr ( )srP , , Ω  for each k and . Define RSsr ∈),( maxε ,

,µ define TTT ; Set network empty.  ∞=min

Step 2: Outer loop 
 i=0; ;0 ∞=ε  
 for every  Θ  do ( ) Ω∈⋅
  i=i+1; 

Step 3: Inner loop (DTA) 

 while max
1 εεε − ii  do for all ≥− Kk ∈  

    Compute dynamic link costs from (3) and dynamic route costs from (7); 
    Determine the route choices of travellers for every  from (16); k

Update dynamic route flows using (18);   
Perform DNL to obtain link flows; 

   end do; 
   Compute the total travel time function TTT corresponding toΘ  ;  ( ) Ω∈⋅
   if TTTTTT <  min

    TTTmin :=TTT; 
   end if; 
 end do; 

Return TTTmin, Θ .   ( )⋅*
 
 

FIGURE 3 Scheme of the algorithm 
 
 
5 CASE STUDY 
 
In this section the algorithm introduced in Section 4 will be applied on Chen network, which is depicted 
in Figure 2. The link parameters are defined in Table 2.  We consider 23 departure time intervals, the 
demand step is 12 minutes. Also, each demand step is divided into 10 substeps splitting each interval into 
10 equal subintervals, ξ  will refer to the ξ -th subinterval, { }.230,,1K∈ξ The travel demands are 
defined in Table 2.  
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link length  
 
[km]  

maximum 
speed 
[km/h] 

critical  
speed 
[km/h] 

minimum 
speed 
[km/h] 

jam 
density 
[pcu/km] 

capacity 
 
[pcu/h] 

1 10 120 80 10 150 2000 
2 7.5 120 80 10 150 2000 
3 7.5 120 80 10 150 2000 
4 10 120 80 10 150 2000 
5 7.5 120 80 10 150 2000 
6 7.5 120 80 10 150 2000 

 
TABLE 1 Link parameters 

 
 

 
 

FIGURE 3 CHEN network 
 
 
k  1,20,21,22,23 2, 19 3, 18 4, 17 5, 16 6, 15 7,14 8,13 9,10,11,12

kd ),5,1(  0 300 600 1500 3000 4500 7500 10500 12000 
kd ),5,1(  0 200 400 1000 2000 3000 5000 7000 8000 

 
TABLE 2 Travel demands 

link 2  
link 3  

link 5  

link 1  link 4  1 3 5 

2 4

link 6  

RS-pair route links 
RS – pairs: {(1,5), (3,5)} )5,1(  4,1  )5,1(

1p
)5,1(  4,3,2  )5,1(

2pTollable links: T  }.4,1{=
)5,1(  6,5,1  )5,1(

3p
)5,1(  6,5,3,2  )5,1(

4p
)5,3(  4  )5,3(

1p
)5,3(  6,5  )5,3(

2p
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We will restrict ourselves by defining the tolls on tollable links as linear functions of traffic volumes in 
the network in the following manner:  

( )
⎪⎩

⎪
⎨
⎧

+=
,0

,b
s
xax

a

adef

aa

ξ

ξξθ  

ξ

Here  is the link volume in ξ
ax

during the ξ -th time subinter
outer loop of the algorithm pr
total travel time of the syste
problem with traffic flow–inva

The grid search is applie
function as well. In the future res
and non-convexity of this total tr
on link toll is added: maxθθ ≤a ,
are defined as follows: ,2.0=µ  

Obtained results with no
the interpolation of  the total tra
region where the global min
obviously non-linear and non-co
search).   

 
 

No toll  
Uniform toll – link 1 (SG) 

Uniform toll – both links  the
same toll (SG) 

4,1

Uniform toll –links  different
toll (SG) 

4,1

Flow-dependent toll on both 
(ISG) 

4,1

 
 
As you can see, the flow

time. The optimal tolling function

( )
a

a
aa s

xx
ξ

ξξθ 2.48.1 −= . 

The resulting tolls on links 1 and
  
Remark 
One way of decreasing number o
is to decrease toll on its route 

 

(20) 
if  and   Ta∈ ,0>ax

the ξ -th subinterval, i.e., the number of travellers present on link a  
val. Since the toll functions have properties defined by (12), the 
esented in Section 5 simplifies to finding  and b minimizing the 
m. Moreover, if  is set to , we obtain classical Stackelberg 
riant tolls.  

a
a 0

otherwise. 

d for the outer loop, since we are interested in the shape of the objective 
earch some more sophisticated method taking into account non-linearity 
avel time function can be used (e.g. genetic algorithms). An upper bound 
  where ,Aa∈∀ maxθ  was set to  euro.  The other initial parameters 20

.  5
max 10−=ε

 toll, uniform toll, and flow-varying toll are depicted in Table 3, while 
vel time function with respect to different values of and  (on the 
imum was found) is presented in Figure 4. The function itself is 
nvex, but smooth (the nonsmoothness in the plot is caused by the grid 

a b

Minimum total travel time [h] Optimal toll scheme  
19021.2 - 
18868.9 20*

1 =θ [euro] 
 18313.6 5.18,5.18 *

4
*
1 == θθ [euro] 

 18101.6 3.10,4.19 *
4

*
1 == θθ  [euro] 

 16619.7 8.1,2.4 ** =−= ba  

 
TABLE 3 Results 

-dependent tolling brings us remarkable improvement of the total travel 
s are on both links given by  

(21) 

 4 are then between 0 and 1.5 euro for each time subinterval.  

f travelers on the route is to increase toll on that route. The other option 
alternative, as it was heuristically done in San Diego’s interstate 15 
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congestion pricing project (see (6)). That is also why the optimal tolling function (21) is decreasing with 
traffic volume. This is interesting mainly from practical point of view, since change of the network 
properties do not need to urge a change of a set of tollable links, recalculation of the existic tolling 
scheme might be sufficient. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4 Total travel time function – inverse Stackelberg game 
 
 
6 CONCLUSIONS, FUTURE RESEARCH 
 
We formulated the dynamic optimal toll design problem with second-best traffic-flow dependent tolling 
as an inverse Stackelberg game. We discussed the properties of the model and presented a simple 
algorithm solving the problem. This algorithm was performed on a small case study. Even with the very 
simple tolling schemas, application of the traffic-flow dependent tolling improved the system 
performance remarkably.  
 The resulting total travel function is smooth, but non-linear and non-convex, the problem itself is 
NP-hard, if we do not restrict ourselves on finite set of possible tolling functions.   
 An extension of the presented model to multi-class user conditions, using of more advanced 
tolling rules, as well as applying the presented algorithm on bigger networks is a subject of future 
research. In that case, a more sophisticated procedure solving the outer loop of the problem has to be 
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introduced. We are currently working on solving the problem on real-size network with use of genetic 
algorithms that seem to be a promising tool for this purpose.  
 Clearly, the traffic-flow dependent second-best tolling is a very promising pricing option for real 
applications, since it brings generally better results than uniform or time-varying traffic-flow independent 
tolling.  
 One of the important questions concerning the traffic-flow dependent tolling is how to apply our 
approach in practice. In San Diego’s interstate 15 congestion pricing project (see (6)) the toll on one route 
is automatically decreased when its parallel route is congested.  Similar concept can be used when 
applying the traffic-flow dependent tolling. Moreover, the travelers could be informed about the actual 
level of toll via information boards before they enter the route. Additional research is needed in this area, 
too.  
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