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Abstract— In this paper the dynamic optimal toll design
problem as a game of the Stackelberg type is investigated,
with the road authority as leader and drivers on the road
network as followers. The road authority sets dynamic traffic-
flow dependent tolls on some links in order to minimize
its objective function, while the drivers choose their routes
and departure times so as to minimize their own perceived
travel costs, which include a travel time component, tolls,
and penalties for deviation from their preferred arrival an d
departure times. The drivers’ behavior is modeled using a
dynamic user equilibrium model. We define the problem in a
general form so that a wide class of objective functions for the
road authority and a wide class of the dynamic traffic equilibria
can be employed. We also discuss the problem properties.

The problem to find optimal traffic-flow dependent tolls in a
general setting introduced in this paper is NP-hard. One of the
ways of tackling such problems is to use advanced heuristic
methods. In this paper a neurosimulation-based approach is
proposed, using the neurosimulator FAUN 1.0.

The proposed solution method is illustrated on case studies
with the so-called Chen network.

I. I NTRODUCTION & L ITERATURE OVERVIEW

Traffic congestion has become a big problem, especially
in heavily populated metropolitan areas. One of the ways to
reduce traffic congestion is to impose appropriate tolls, in
a road pricing scheme. Road pricing has received a lot of
attention in research ([1], [2], [3], [4]) and practice ([5]).

Thedynamic optimal toll design problem, discussed in this
paper ([2], [6], [7]) is a problem of the Stackelberg type ([8],
[9]), applied to the traffic environment with a road authority
as a leader and drivers (also referred to as travelers or users)
as followers. The aim is to minimize the objective function
of the road authority by imposing appropriate tolls on some
links, while the drivers minimize their perceived travel costs
by their travel choices, taking the tolls into account. In an
equilibrium state, adynamic user equilibriumapplies ([10],
[11]).

A number of studies have focused on the so-calledfirst-
best pricing, in which all the links in the network can be
tolled ([12], [13], [14]). In our research we consider the so-
calledsecond-bestpricing ([1], [15]), in which only a proper
subset of all links can be tolled, as this concept seems to be
more suitable for practical applications.

Most publications dealing with the optimal toll design
problem with second-best pricing ([6], [1]) aim to find the
optimal link tolls as values independent of the traffic flows in
the network (uniform or time-varying toll). We have recently
introduced ([16], [17]) the optimal toll design problem,
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in which the link tolls are computed as functions of link
or route traffic flows in the network. This fits within the
theoretical framework of the so-calledinverse Stackelberg
problems([18], [19]). We have shown that the traffic-flow
dependent toll can improve the traffic system performance
remarkably, while it can never perform worse than the traffic-
flow invariant toll.

In our previous work we have assumed that travelers
decide only about their routes, while their departure times
are fixed. This paper introduces an extension of our recent
research into the situation in which the drivers choose their
departure times, too. Moreover, we generalize the problem so
that a wide range of objective functions for the road authority
and user equilibrium models for the drivers can be consid-
ered. We present some of the properties of this generalized
problem. A neural-networks based approximation algorithm
is used to solve the problem, as the problem is NP-hard. The
proposed algorithm can be used for general networks and for
a wide range of pricing problems. The performance of the
algorithm is presented on the so-calledChen network([20]).

This paper is organized as follows: In Section II, the
optimal toll design problem is defined and its properties
are discussed. In Section III, the algorithm that is used for
solving the problem is presented. Its advantages and pitfalls
are discussed. In Section IV we perform experiments on the
Chen network. Conclusions and possible future research are
given in Section V.

II. THE DYNAMIC OPTIMAL TOLL DESIGN
PROBLEM

A. Preliminaries

Let G = (N ,A ) be a strongly connected road network,
where N and A are finite nonempty sets of nodes and
directed links, respectively. LetT ⊆A be the set of tollable
links. There is a finite, nonempty set of origin-destination
pairs RS ⊂ N ×N . Let K = {1,2, . . . , |K |} be a time
index set. Here eachk∈ K refers to

• the interval[(k−1.5)∆,(k−0.5)∆) if k≥ 2,
• the interval[0,0.5∆) if k = 1,

where∆ [h] is the length of each time interval.
For an ordered pair of nodes(r,s) ∈ RS , where r is an

origin ands is a destination, there is a positive number of
drivers traveling fromr to s, the so-called travel demand
d(r,s) [veh], during the time interval[0,(|K |−0.5)∆].

Let P be the set of all simple paths in the network and
let P(r,s) ⊂P be the set of simple paths between fromr to
s. Each path is formed by one or more directed links. The



route flow on pathp∈P during thek-th time interval will be
denoted byf (k)

p ([veh/h]), the link flow on the linka during
the k-th time interval will be denoted byq(k)

a ([veh/h]).
Let c(k)

p ([euro]) denote the route travel costs on the route
p∈ P for a driver entering this route during thek-th time
interval. Letς (k)

a ([euro]) denote the average link travel cost
on a link a during thek-th time interval.

The traffic, times, costs, flows, and dynamic tolls are
assumed to be additive. See [18] for a detailed description
via the so-calleddynamic route-arc incidence indicator. 1

For each routep ∈ P(r,s) the dynamic route travel cost
c(k)

p for the travelers entering the route during thek-th time
interval is defined as follows:

c(k)
p = α1θ (k)

p + θ (k)
p + α2

(

k− k̂(r,s),dep
)

+ α3

(

k+ τ(k)
p − k̂(r,s),arr

)

. (1)

wheret(k)p is the actual route travel time,θ (k)
p is the actual

route toll, k̂(r,s),dep is the preferred departure time for a driver
traveling from originr to destinations, starting his/her trip
during thek-th time interval,k̂(r,s),arr is the preferred arrival
time for a driver traveling from originr to destinations, start-
ing his/her trip during thek-th time interval; coefficientsα1,
α2, and α3 ([euro/h]) are the value of time, the penalty for
deviating from the preferred departure time, and the penalty
for deviating from the preferred arrival time, respectively.

Let q, t, andς denote the column vectors of the link flows,
the link travel times, and the link travel costs for all links
and all time intervals and letf , τ, andc denote the column
vectors of the route flows, the route travel times, and the
route travel costs for all link and all time intervals (For more
details, see [18]).

For each link fromT and each time interval a traffic-flow
dependent toll can be imposed. The traffic-flow dependent
toll on link a∈T will be denoted byθ (k)

a (·). This toll will be
defined for eachk-th time interval as a polynomial function
of link flow for the same time interval and on the same link,
i.e.,

θ (k)
a

(

q(k)
a

)

=
M

∑
m=0

w(m),(k)
a

(

q(k)
a

)m
, (2)

where

w(m),(k)
a =

{

0 for a∈ A \T ,
∈ R for a∈ T ,

with M ∈ N0. By definition,2

θ (k)
a

(

q(k)
a

)

{

= 0 for a∈ A \T ,
≥ 0 for a∈ T .

(3)

Let θ be a vector of link toll functions for all links and
all time intervals. Similarly, the coefficient vector will be

1Since some of the variables have to be rounded off, additional discussion
about the consistency of these equations is needed. Such a discussion can
be found in, e.g., [21].

2More advanced toll functions can include, e.g., traffic flowsfrom previ-
ous time periods, but we are looking for a very simple scheme improving
the system performance. Therefore we will restrict ourselfto toll functions
in the form (2). See [18] for discussions on this topic.

defined asw. Let w ∈ W, whereW is a compact set, i.e.,
w(m),(k)

a ∈
[

w(m),min,w(m),max
]

for all a ∈ T and for all m,

w(m),min,w(m),max ∈ R, w(m),min < w(m),max. Note that while
coefficients w(m),(k)

a can be negative, the toll has to be
nonnegative on all links, as stated in (3).

With M = 0 in equation (2) the toll level becomes time-
varying, but not directly dependent on traffic flow.

B. Drivers’ behavior – dynamic traffic assignment

The so-calleddynamic traffic assignment (DTA) model
describes user-optimal flows over a network in which each
driver chooses his/her preferred route and his/her preferred
departure time from origin to destination, based on the time-
varying conditions in the network.

The standard DTA models consist of adynamic travel
choice(DTC) model and adynamic network loading(DNL)
model ([22], [20]).

The DTC contains a path choice model in which all
travelers are distributed on all available routes so that some
kind of dynamic user equilibrium is achieved.

In the problem of traffic assignment with given total traffic
demand, each driver chooses both a departure time and a
certain route from his/her origin to his/her destination in
order to minimize his/her perceived travel costs. We assume
that someDynamic traffic equilibriumapplies.3

The dynamic network loading (DNL) model is formulated
as a system of equations expressing link dynamics, flow
conservation, flow propagation, and boundary constraints.
The DNL model simulates the progression of the route flows
on the network, yielding dynamic link flows, link volumes,
and link travel times developing over time. The DNL model
used in this paper is adapted from [22] and can be found in,
e.g., [21].

C. The problem formulation

The goal of the road authority is to choose an optimalw∗,
minimizing his/her objective function. We will denote this
function by Z = Z(q(w),w) . The problem to be dealt with
can be formulated as follows:

(P)







Find
w∗ = argminw∈W Z(q(w),w) ,

subject toq∈ DUE(w) ,

where (2) and (3) hold.
We assume that the functionZ is defined for eachw, q(w)

without any additional requirements. Therefore, a wide range
of functions can be used asZ.4

The expressionq∈ DUE(w) reads as “link flow vectorq
is a result of a used dynamic user equilibrium (DUE) model
when a polynomial toll function with coefficient vectorw is
used.” . Note that the functionZ in the problem (P) is not
specified, we only assume that it is a function ofw of q(w).

The “standard” Stackelberg problem would be defined as
a subproblem of (P), withM = 0.

3At this moment no further specification of such an equilibrium is
required.

4Typically, the functionZ is defined as the total travel time of the system,
negative of the total toll revenue, or negative of the surplus of the system.



D. General problem properties

Note that problem (P) is a nonlinear programming prob-
lem. Also, the problem (P) has at least one solution if the
DUE constraint represents a compact set of(w,q(w)). If for
any givenw the setDUE(w) is a singleton,w→ q is a one-
to-one mapping. In this case, the continuity ofq with respect
to w will guarantee that the constrained set of (P) is closed,
which implies the solution existence of (P) sinceq andw are
bounded. In general,DUE(w) may have multiple solutions
in terms ofq and thusDUE(w) may not be a singleton. In
this case,DUE(w) is a point-to-set mapping ofw ([23]). The
solution existence of (P) will depend on the compactness of
the graphDUE(w) , defined as

Ψ (w,q) = {(w,q) |q∈ DUE(w) , ∀w∈W}. (4)

Theorem 2.1:The problem (P) has at least one solution if
the following conditions are satisfied:

i. The setDUE(w) is nonempty and compact for∀w∈
W.

ii. Let w,w∈W and letq∈ DUE(w), q∈ DUE(w). For
eachε > 0, there existsδ > 0 such that if||w−w||< δ ,
then

max
∀q∈ DUE(w)

min
∀q∈ DUE(w)

||q−q|| < ε.

iii. The link travel cost functions on all links are continu-
ous functions of the link flows on the same links.

Proof: Let R(0,ε) be an open ball with radiusε. Then

Y
def
= DUE(w)+R(0,ε) is an open set containingDUE(w).

Let us define an other open setZ
de f
= {w : ||w−w|| < δ}

containingw. According to conditionii. in Theorem 2.1, for
any ε > 0, there existsδ > 0 such that

max
∀q∈DUE(w)

min
∀q∈DUE(w)

||q−q|| < ε,

which is equivalent to∪w∈Z DUE(w) ⊆ Y . Thus, un-
der ii. , the point-to-set mapping ofDUE(w) is upper-
semicontinuous. Together with conditioni. it implies that the
point-to-set mappingDUE(w) is closed on setW. Thus the
graphΨ (w,q) is closed. Also, underi., DUE(w) is bounded
for anyw∈W. SinceW is a bounded set, the graphΨ (w,q)
is bounded as well. Thus, graphw∈W is compact. Together
with iii. and the fact thatW is compact, we can conclude
that (P) has at least one solution, since it is a nonlinear
programming problem with a continuous objective function
defined on a compact set.

Theorem 2.2:Problem (P) is strongly NP-hard.
Proof: See [18].

Note that Theorems 2.1 and 2.2 extend theory about
“standard” Stackelberg games (withM = 0), which can be
found in, e.g., [24], [25]. Additionally, the problem (P) can
have a nonunique solution (See [18] for details).

III. PROBLEM SOLUTION

The solution method for (P) that we propose is a com-
bination of a neural networks approach for the upper level
of the problem (finding optimal traffic-flow dependent toll
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Fig. 1. Flow diagram of the solution process

for the road authority) and a method of sufficient averages
(MSA) for the lower level of the problem (finding optimal
traffic flows of the travelers according to the chosen dynamic
user equilibrium). The concept of neural networks is closely
related to the concept of supervised learning, which will be
explained below. In Figure 1 the flow diagram of the solution
process is depicted.

A. Supervised learning

Let functiong : R
n → R

m assign a vectoryi ∈ R
m to each

vector xi ∈ R
n, i.e., yi = g

(

xi
)

. We will refer to the pair
(

xi ,yi
)

as thei-th pattern of the functiong. The vectorxi

will be called theinput vector (of g) and the vectoryi will
be called theoutput vector (of g). Supervised learning is a
way to approximate the functiong given a set ofo patterns
[26].

An artificial neural network (ANN) can be thought of
as a simple mathematical formula with parameters called
weights [26]. The result of supervised learning is an approx-
imation functiongapp with an appropriately chosen vector
of weightss. The goal of supervised learning with ANN is
therefore to find a functiongapp: R

n →R
m, that approximates

the functiong in the best way. Moreover, it is required that
gapp has derivatives of all finite orders in the components of
x.

Several criteria can be used to validate whether the func-
tion gapp is “close enough” tog. In our approach the so-called
validation error for each pattern (xi, yi), i = 1,2, . . . ,o, is



minimized.
The set ofo patterns is divided into a set oft training

patterns and a set ofo− t validation patterns. For a given
vector of weightss the training and the validation errors are
calculated by

εt(s)
def
=

1
2

t

∑
i=1

m

∑
k=1

(gapp
k (xi ;s)−yi

k)
2,

εv(s)
def
=

1
2

o

∑
i=t+1

m

∑
k=1

(gapp
k (xi ;s)−yi

k)
2,

(5)

wheregapp
k andyi

k, k = 1,2, . . . ,m, refer to thek-th entry of
gapp and yi , respectively. The elements ofs are optimized
only for t training patterns, while the validation patterns are
used to prevent overtraining.

An ANN is trained iteratively, i.e.,εt is decreased by
adaption ofs, until εv increases for two consecutive iterations
(prevention of overtraining). Note that the training stops
before a local minimum ofεt is reached. Weight upgrades
siter+1− siter can be calculated with any minimization algo-
rithm, e.g., a first derivative method such as steepest descent,
or a second derivative method such as Newton’s method. For
the first derivative methods the iterative sequence

siter+1 = siter+η
(

εt

(

siter
)

,∇sεt

(

siter
))

∆s
(

εt(siter),∇sεt

(

siter
))

,

(6)
with the search direction∆s and with step lengthη

takes place. For the neurosimulation the FAUN5 1.0 simu-
lator is used ([26]). Numerical methods implemented within
FAUN 1.0 for constrained nonlinear least-squares problems
([27]) are sequential quadratic programming (SQP) meth-
ods and generalized Gauss-Newton (GGN) methods. These
methods can exploit the special structure of the Hessian
matrix of εt ([28], [29], [30]). The SQP and GGN methods
can automatically overcome most of the training problems
of ANN such as flat spots or steep canyons of the error
function εt . See [26], [31], [32] for more information about
neurosimulator FAUN 1.0.

B. Solution of problem (P)

The solution process consists of the following steps:

1) For every selection of the toll vectorw the so-called
C-load algorithm ([22]) is used in order to obtain
the DUE traffic flowsq∈ DUE(w). The value of the
objective functionZ(q(w),w) is computed.

2) The set of sample points(w,Z(q(w),w)) is divided into
training patterns and validation patterns and the neu-
rosimulation introduced in Section III-A takes place in
order to approximateZ.

3) This approximation function ofZ is minimized, opti-
mal w minimizing Z is found.

For description of the solution process in more detail, see
[18].

IV. CASE STUDIES

In this section the performance of the algorithm introduced
in Section III will be tested on more specific problem of
the type (P). We will consider the so-calledChen network,
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Fig. 2. Chen network.

depicted in Fig. 2. In the case studies we will confine
ourselves by the following assumptions:

• The objective function for the road authority is the total
travel time, i.e.,Z

def
= τT · f.

• We consider two origin-destination pairs:(1,5), (3,5).
• The input parameters are set as follows:K =
{1, . . . ,16}, α1 = 10 [euro/h],α2 = 0.8, [euro/h],α3 =
2 [euro/h], k̂(1,5),dep = 4, k̂(1,5),arr = 8, k̂(3,5),dep = 6,

k̂(3,5),arr = 8, d(1,5) = 8000 [veh],d(3,5) = 4000 [veh],
εv = 0.001, w(m),min = −10, w(m),max = 10.

• We consider the so-calleddynamic logit-based user
equilibriumas a specific dynamic user equilibrium (see
[18] for more details), withµ = 0.2. Convergence of the
algorithm is verified using therelative dynamic duality
gap (see [18] for its definition). If the relative duality
gaps of two consecutive iterations are close enough, i.e.,
if |ε(iter) − ε(iter−1)| < εmax, with a given small positive
numberεmax, the algorithm is terminated. We setεmax

to 10−3.
• For each directed arca∈ A the following parameters

are initially given: link lengthsa [km], maximum speed
ϑ max

a [km/h], minimum speedϑ min
a [km/h], critical

speedϑ crit
a [km/h], jam densityJjam

a [pcu/km], where
pcu denotes passenger car units, and the unrestricted
link capacityCa [pcu/h]. Dynamic link travel time for
an individual user entering linka during thek-th time
interval (k∈K ) is defined asτ(k)

a = sa

ϑ (k)
a

, where the link

speedϑ (k)
a [km/h] is defined asSmulders speed-density

function (see [33]):

ϑ (k)
a =











































ϑ max
a +

ϑ crit
a −ϑ max

a
Jcrit

a
J(k)
a ,

if J(k)
a ≤ Jcrit

a ,

Jjam
a +

(

ϑ crit
a −ϑ min

a
)

(

J(k)
a

)−1
−

(

Jjam
a

)−1

(Jcrit
a )−1−

(

Jjam
a

)−1 ,

if Jcrit
a ≤ J(k)

a ≤ Jjam
a ,

ϑ min
a , if J(k)

a ≥ Jjam
a ,

(7)

with critical densityJcrit
a [pcu/km] defined as

Jcrit
a = Ca/ϑ crit

a .
• Initial link parameters are depicted in Table I.
• Link tolls are defined by (2). The results of the problems

with M = 0,1,2,3 were compared.
The algorithm introduced in Section III was applied to

solve the problem.

5Fast Approximation with Universal Neural networks



TABLE I

INITIAL LINK PARAMETERS

a sa ϑ max
a ϑ crit

a ϑ min
a Jjam

a Ca
1 7.5 150 90 20 50 3500
2 15 120 70 10 150 1500
3 15 120 70 10 150 1500
4 10 150 90 20 50 3500
5 15 120 70 10 150 1500
6 15 120 70 10 150 1500

TABLE II

THE RESULTING TOLL VALUES (FORk∈ {1, . . . ,8}) AND TOTAL TRAVEL

TIMES FOR CASE STUDY WITH ONE LINK TOLLED

M θ (k)
1 [euro] Z [h]

0
2.4 2.7 4.2 6.6
6.5 5.9 5.4 5.2 53667

1
1.9 2.3 5.3 7.2
7.3 6.2 5.2 4.9 48142

2
1.8 2.3 5.4 7.5
7.4 6.4 5.2 4.7 45130

3
1.5 1.9 5.9 7.6
7.8 6.4 5.0 4.8 43825
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Fig. 3. The resulting traffic flows for case study with two links tolled,
M = 3.

A. Case study with one link tolled

We will first consider the situation with only link 1 tolled,
M will vary from 0 to 3. For the solution process introduced
in Section III 40000 samples(w,Z(q(w),w)) were collected.
For each computations, these samples were splitted into
30000 training data and 10000 validation data.

The resulting toll values for first 8 time intervals and
values of total travel times for the situation withM = 0,
M = 1, M = 2, andM = 3 are depicted in Table II. Clearly,
the polynomial tolls result in a better outcome for the road
authority. For all variants ofM the approximation function
had many local minima, but only one global minima.

The computation time on 16 processors was approximately
10.5 [min]. This time can be geometrically decreased by
further parallelization.

TABLE III

THE RESULTING TOLL VALUES (FORk∈ {1, . . . ,8}) AND TOTAL TRAVEL

TIMES FOR THE CASE STUDY WITH TWO LINKS TOLLED

M toll values - link 1 toll values - link 4 Z [h]

0
1.3 1.8 3.5 4.7
4.8 4.7 4.5 4.0

0.9 0.9 1.5 0.5
1.4 2.8 2.2 2.4 45221

1
1.2 1.4 4.1 4.4
4.9 4.5 4.0 4.1

0.8 0.9 1.2 0.8
2.6 2.6 2.9 2.9 43790

2
1.2 1.5 4.3 4.6
4.6 4.4 3.8 3.8

0.8 0.8 1.3 1.2
2.7 2.8 2.8 2.5 42091

3
1.2 1.4 4.4 4.7
4.7 4.7 4.1 3.8

0.7 0.8 1.2 1.4
2.5 2.9 2.7 2.5 41349

B. Case study with two links tolled

Let both links 1 and 4 be tolled. We will use 80000
samples, with 60000 training data and 20000 validation data.
In Table III the resulting toll values for first 8 time intervals
and resulting total travel times for the situations withM = 0,
M = 1, M = 2, and M = 3 are depicted. Again, the poly-
nomial tolls improved the system performance remarkably.

Let p1 denote the route consisting of links 1 and 4, let p2

denote the route consisting of links 1, 5, and 6, let p3 denote
the route consisting of links 2, 3, and 4, and let p4 denote
the route consisting of links 2, 3, 5, and 6. In Figure 3 the
traffic flows on the routesp1, p2, p3, and p4 are depicted.
Note that quite many travelers use the routep1, as its costs
are lower even after imposing tolls on both its links.

The computation time on 16 processors was approximately
52.3 [min].

C. Discussion

After application of the neurosimulation-based algorithm
to solve the problems presented in this section we applied a
very detailed grid search on the same problems. It showed
that the obtained minimal values differed by 0.5 percent
maximally (by means ofL2-norm) and the global minima
were located in the same points as those computed using the
neurosimulation-based algorithm. One has to be very careful
with choosing the right value of the validation error as well
as the sample area, though, to obtain correct results.

The tolls set as polynomial functions of traffic flows
improved the system performance remarkably. Note that
while these tolls are computed as functions of traffic flows,
they are imposed as positive values.

V. CONCLUSIONS & FUTURE RESEARCH

We formulated a very general version of the dynamic
optimal toll design problem and discussed its properties.
As the problem is NP-hard and the objective function of
the road authority generally has many local minima, we
proposed a neurosimulation-based approximation algorithm
using Neurosimulator FAUN 1.0 to deal with the problem.

The algorithm that we proposed is applicable to a wide
range of optimal toll design problems, with different DUE
formulations, and with a wide range of objective functions.



The performance of the proposed algorithm was tested on a
case study on the Chen network.

As the proposed solution method is an approximation
method, it is important to choose the initial parameters for
neurosimulation very carefully to ensure sufficient accuracy,
as well as to avoid overtraining. These issues are discussed
in [26], [18]. With a proper choice of the criteria for
neurosimulation the algorithm performs very well, as we
showed in the case studies.

Even solving a problem defined on a small network was
quite time consuming. However, the algorithm can be par-
allelized, and, therefore, this pitfall can be easily eliminated
and the algorithm can be applied on real-size networks.

We showed that the traffic-flow dependent tolls can per-
form remarkably better than the traffic-flow invariant tolls,
even with simple polynomial toll functions. Use or more
sophisticated toll functions may bring even better results.
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