On Dynamic Optimal Toll Design Problem with Traffic-flow Dependent
Tolls and Drivers’ Joint Route and Departure Time Choices

Katefina Stankova

Abstract—In this paper the dynamic optimal toll design in which the link tolls are computed as functions of link
problem as a game of the Stackelberg type is investigated, or route traffic flows in the network. This fits within the
with the road authority as leader and drivers on the road  hagretical framework of the so-callédverse Stackelberg
network as followers. The road authority sets dynamic traffc- -
flow dependent tolls on some links in order to minimize problems([18], [19])'. We have Shown that the traffic-flow
its objective function, while the drivers choose their roues dependent toll can improve the traffic system performance
and departure times so as to minimize their own perceived remarkably, while it can never perform worse than the traffic
travel costs, which include a travel time component, tolls, flow invariant toll.
and penalties for deviation from their preferred arrival and In our previous work we have assumed that travelers
departure times. The drivers’ behavior is modeled using a . . . . .
dynamic user equilibrium model. We define the problem in a decuje only z_albout the_lr routes, while their .departure times
general form so that a wide class of objective functions forte  are fixed. This paper introduces an extension of our recent
road authority and a wide class of the dynamic traffic equilitria ~ research into the situation in which the drivers chooser thei
can be employed. We also discuss the problem properties.  departure times, too. Moreover, we generalize the probtem s

The problem to find optimal traffic-flow dependent tolls in a 51 5 wide range of objective functions for the road autiori

general setting introduced in this paper is NP-hard. One of he d ilibri dels for the dri b id
ways of tackling such problems is to use advanced heuristic @Nd USEr equilibrium models tor the drivers can be consia-

methods. In this paper a neurosimulation-based approach is €red. We present some of the properties of this generalized
proposed, using the neurosimulator FAUN 1.0. problem. A neural-networks based approximation algorithm
_The proposed solution method is illustrated on case studies s used to solve the problem, as the problem is NP-hard. The

with the so-called Chen network. proposed algorithm can be used for general networks and for
|. INTRODUCTION & L ITERATURE OVERVIEW a wide range of pricing problems. The performance of the

Igorithm i h -cal 20)).
Traffic congestion has become a big problem, especialﬁlgorlt m is presented on the so-calletien network[20])

in heavily nonulated metropolitan areas. One of the wavs t This paper is organized as follows: In Section IlI, the
! vily popu etropolita S: new ys.c?ptimal toll design problem is defined and its properties
reduce traffic congestion is to impose appropriate tolls, in

a road pricing scheme. Road pricing has received a lot (z{e discussed. In Section lll, the algorithm that is used for
attention in research (1], [2], [3], [4]) and practice (5] olving the problem is presented. Its advantages and Ipitfal

: ) - : Y. . are discussed. In Section IV we perform experiments on the
Thedynamic optimal toll design problerdiscussed in this P P

paper ([2], [6], [7]) is a problem of the Stackelberg typel([8 ;ng ir;]etSV\éc‘):rtI;.)nC\o/ncIusmns and possible future research are

[9]), applied to the traffic environment with a road authprit |

as a leader and drivers (also referred to as travelers os)user ||, THE DYNAMIC OPTIMAL TOLL DESIGN

as followers. The aim is to minimize the objective function PROBLEM

of the road authority by imposing appropriate tolls on som

links, while the drivers minimize their perceived travebto

by their travel choices, taking the tolls into account. In an Let G= (.#,.«/) be a strongly connected road network,

equilibrium state, alynamic user equilibriunapplies ([10], where.#" and <7 are finite nonempty sets of nodes and

[11)). directed links, respectively. Le¥ C &7 be the set of tollable
A number of studies have focused on the so-caflesi- links. There is a finite, nonempty set of origin-destination

best pricing, in which all the links in the network can bepairs Z7 C A4 x 4. Let # ={1,2,...,|2¢|} be a time

tolled ([12], [13], [14]). In our research we consider the soindex set. Here eacke 7 refers to

calledsecond-begpricing ([1], [15]), in which only a proper . the interval[(k— 1.5)A, (k— 0.5)A) if k> 2,

subset of all links can be tolled, as this concept seems to be, the interval[0,0.54) if k=1,

more suitable for practical applications. whereA [h] is the length of each time interval.

Most publications dealing with the optimal toll design For an ordered pair of nodds,s) € %, wherer is an
problem with second-best pricing ([6], [1]) aim to find theyain angs is a destination, there is a positive number of
optimal link tolls as values independent of the traffic flows i drivers traveling fromr to s, the so-called travel demand
the network (uniform or time-varying toll). We have recgntl jr.s) [veh], during the time interval, (|7 | — 0.5)A].

introduced ([16], [17]) the optimal toll design problem, Let & be the set of all simple paths in the network and

K. Stankova is with NeCS (INRIA Grenoble Rhone-Alpes p&i-lab), let ‘@(r’s) - '@.be the set of simple paths b.etween Trom)
Grenoble, Francekat er i na. st ankova@ nri al pes. fr. s. Each path is formed by one or more directed links. The
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route flow on pathp € &2 during thek-th time interval will be  defined asw. Let w € W, whereW is a compact set, i.e.,
denoted byf$ ([veh/h]), the link flow on the linka during  wi™"® ¢ Iw(m),min,w(m),max for all ac .7 and for allm,
the k-th time interval will be denoted bq§k> ([veh/h]). w(m:-min yp(m.max c - \p(m.min - \(m.max Note that while

Let cg‘) ([euro]) denote the route travel costs on the rOUtﬁoeﬁicientswgm>*(k) can be negative, the toll has to be
p € & for a driver entering this route during theth time  ponnegative on all links, as stated in (3).

interval. Letc§k> ([euro]) denote the average link travel cost With M = 0 in equation (2) the toll level becomes time-
on a linka during thek-th time interval. varying, but not directly dependent on traffic flow.

The traffic, times, costs, flows, and dynamic tolls areB Drivers’ behavior — dynamic traffic assignment
assumed to be additive. See [18] for a detailed description

via the so-calledlynamic route-arc incidence indicatot The so-calleddynamic traffic assignment (DTA) model
For each routep € 29 the dynamic route travel cost describes user-optimal flows over a network in which each

C(pk> for the travelers entering the route during tk¢h time driver choo_ses his/her_ preferred rout_e and his/her pmigrr
interval is defined as follows: departure time from origin to destination, based on the time
varying conditions in the network.

C%Jk) = Gleék> +9;gk>+az(kfk(r,s),dep) The standard DTA models consist of dynamic travel
® T choice(DTC) model and alynamic network loadingDNL)
+0s (k1" ~Kirgan). @ rodel (1221, [20)).

Wheret,gk) is the actual route travel timc&ék) is the actual __'n€ DTC contains a path cho_lce model in which all
route toll, R(r,s),dep is the preferred departure time for a driver:(rii\éegz ar:Zn?ilcStSsgrteed Sin]ibililu?r\ll?;lzbclﬁi;sg;es 50 thateso
traveling from originr to destinatiors, starting his/her trip In the yroblem of traﬁ?c assignment with iv.en total traffic
during thek-th time interval,K.) ar is the preferred arrival demand peach driver chooseg both a de garture time and a
time for a driver traveling from origimn to destinatiors, start- S . - gep T
ing his/her trip during thé-th time interval; coefficientsry, certain route f_rom _hls/her origin to his/her destination in
a2, and az ([euro/h]) are the value of time, the penalty forOrder to minimize h|s/h§r pert_:glv_ed ”"’“"?‘ ;OStS' We assume
deviating from the preferred departure time, and the pgznal{hat someDyn_amlc traffic eqqlllbnumapphe .
for deviating from the preferred arrival time, respectwel The dynamic networl§ loading (DN.L) mpdel IS formulated
as a system of equations expressing link dynamics, flow

Letq, t, and¢ denote the column vectors of the link flows, . . .

. . : . 'conservation, flow propagation, and boundary constraints.
the link travel times, and the link travel costs for all IlnksThe DNL model simulates the broaression of the route flo
and all time intervals and let, 7, andc denote the column N the network Slielléiin 3 naraicglinlfsf:ows link voulumesws
vectors of the route flows, the route travel times, and then ™ Y g ayn: . ' '

and link travel times developing over time. The DNL model

routg travel costs for all link and all time intervals (For @o used in this paper is adapted from [22] and can be found in,
details, see [18]). e.q. [21]

For each link fromZ and each time interval a traffic-flow
dependent toll can be imposed. The traffic-flow dependef The problem formulation

toll on link a€ 7 will be denoted bya{“(-). This toll will be The goal of the road authority is to choose an optimial
defined for eactk-th time interval as a polynomial function minimizing his/her objective function. We will denote this
of link flow for the same time interval and on the same linkfunction by Z = Z (q(w),w). The problem to be dealt with

i.e., can be formulated as follows:
M m Find
K) [ (K (K k
o () = 3 wi™ (o) @ ®) | w—agmin.wz(ww,
m=0 subject toq € DUE (w),
where
(m), () 0 for ac.«\ 7, where (2) and (3) hold.
Wa ~) eR for ae 7, We assume that the functiahis defined for eaclw, q(w)
_ o, without any additional requirements. Therefore, a widgean
with M € Np. By definition: of functions can be used &*
o0 ( (k)) =0 for ac\.7, @) The expression € DUE(W) reads as_“.lin_k flow vectoq
a " | Ja >0 for ae 7. is a result of a used dynamic user equilibrium (DUE) model

when a polynomial toll function with coefficient vecteris
used.” . Note that the functioZ in the problem (P) is not
specified, we only assume that it is a functionwobf g(w).
1Since some of the variables have to be rounded off, addititisaussion The “standard” Stackelberg problem would be defined as

about the consistency of these equations is needed. Suatussion can & subproblem of (P), witiM = 0.
be found in, e.g., [21].

Let 6 be a vector of link toll functions for all links and
all time intervals. Similarly, the coefficient vector willeb

2More advanced toll functions can include, e.g., traffic fldvesn previ- 3A_t this moment no further specification of such an equilibrius
ous time periods, but we are looking for a very simple schemgréving  required.
the system performance. Therefore we will restrict ourgelfoll functions 4Typically, the functionZ is defined as the total travel time of the system,

in the form (2). See [18] for discussions on this topic. negative of the total toll revenue, or negative of the swwmlfithe system.



D. General problem properties

Note that problem (P) is a nonlinear programming proh
lem. Also, the problem (P) has at least one solution if th
DUE constraint represents a compact sefwafg(w)). If for
any givenw the setDUE (w) is a singletonw — q is a one-
to-one mapping. In this case, the continuityqofvith respect
to w will guarantee that the constrained set of (P) is close
which implies the solution existence of (P) sirggandw are
bounded. In generaDUE (w) may have multiple solutions
in terms ofg and thusDUE (w) may not be a singleton. In
this casePUE (w) is a point-to-set mapping af ([23]). The
solution existence of (P) will depend on the compactness
the graphDUE (w), defined as

Y(w,q) ={(w,q)|q e DUE(w), Yw € W}. 4)

Theorem 2.1:The problem (P) has at least one solution if
the following conditions are satisfied:
i. The setDUE(w) is nonempty and compact fatw €
W.
ii. Let w,weW and letq e DUE(w), g € DUE(W). For
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eache > 0, there exist® > 0 such that if jw—W|| < J,
then

max min

— < E.
v(e DUE(W) (e DUE(W) lla—dll

The link travel cost functions on all links are continu-
ous functions of the link flows on the same links.
Proof: Let R(0,¢) be an open ball with radius. Then

o & DUE(w) +R(0, €) is an open set containirlQUE(w).
Let us define an other open sét def {w: ||lw—W|| < d}

containingw. According to conditiorii. in Theorem 2.1, for
any € > 0, there existsd > 0 such that

max min

-7 <&,
vquUE(\N)vquUE(W)Hq al

which is equivalent toUwe#DUE(w) C %/. Thus, un-
der ii., the point-to-set mapping oDUE(w) is upper-
semicontinuous. Together with conditiorit implies that the
point-to-set mappindUE (w) is closed on se¥V. Thus the
graph¥ (w, q) is closed. Also, under, DUE (w) is bounded
for anyw € W. SinceW is a bounded set, the grajgh(w, q)

is bounded as well. Thus, graphe W is compact. Together
with iii. and the fact thatv is compact, we can conclude
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Fig. 1. Flow diagram of the solution process

for the road authority) and a method of sufficient averages
(MSA) for the lower level of the problem (finding optimal
traffic flows of the travelers according to the chosen dynamic
user equilibrium). The concept of neural networks is clpsel
related to the concept of supervised learning, which will be
explained below. In Figure 1 the flow diagram of the solution
process is depicted.

A. Supervised learning

Let functiong: R" — R™ assign a vectoy' € R™ to each
vectorx' € R", i.e., y' = g(x'). We will refer to the pair
(x',y') as thei-th pattern of the functiong. The vectorx
will be called theinput vector (ofg) and the vectoy' will
be called theoutputvector (ofg). Supervised learning is a

that (P) has at least one solution, since it is a nonlineavay to approximate the functiog given a set ofo patterns
programming problem with a continuous objective functiorj26].

defined on a compact set. ]
Theorem 2.2:Problem (P) is strongly NP-hard.
Proof: See [18]. ]

Note that Theorems 2.1 and 2.2 extend theory abo
“standard” Stackelberg games (with = 0), which can be
found in, e.g., [24], [25]. Additionally, the problem (P)rca
have a nonunique solution (See [18] for details).

1. PROBLEM SOLUTION

An artificial neural network (ANN) can be thought of
as a simple mathematical formula with parameters called
weights [26]. The result of supervised learning is an approx
ihation functiong?P with an appropriately chosen vector
of weightss. The goal of supervised learning with ANN is
therefore to find a functiog???: R" — R™, that approximates
the functiong in the best way. Moreover, it is required that
g?PP has derivatives of all finite orders in the components of
X.

The solution method for (P) that we propose is a com- Several criteria can be used to validate whether the func-
bination of a neural networks approach for the upper leveion g*Pis “close enough” t@. In our approach the so-called
of the problem (finding optimal traffic-flow dependent tollvalidation error for each patternx, y'), i =1,2,...,0, is



minimized.

The set ofo patterns is divided into a set dftraining
patterns and a set af—t validation patterns. For a given
vector of weightss the training and the validation errors are
calculated by

1 t m

g %= le (gEPP(x";8) — Vi) 2
)

2| k=1

e (5)
_e app 2
=5 Z Z (x";8) — k)2, Fig. 2. Chen network.

i=t+1k=1

wheregg™ andyj, k=1,2,...,m, refer to thek-th entry of
g?°P and y', respectively. The elements sfare optimized depicted in Fig. 2. In the case studies we will confine

only for t training patterns, while the validation patterns ar@Urselves by the following assumptions:

used to prevent overtraining. « The objective function for the road authority is the total

An ANN is trained iteratively, i.e.,& is decreased by travel time, i.e. z‘j—Efr -f.

adaption ofs, until &, increases for two consecutive iterations | \we consider two origin-destination pairgt,5), (3,5).

(prevention of overtraining). Note that the training stops . -
before a local minimum of; is reached. Weight upgrades * The input parameters are set as followst” =

gtert1 _ gter can be calculated with any minimization algo- ~ {1:---,16}, 01 =10 [euro/h],a2 = 0.8, [euro/h], a3 =
rithm, e.g., a first derivative method such as steepest desce 2 [euro/h] Kis)dep= 4 Kis)ar = 8, k@zs)dep= 6,
or a second derivative method such as Newton's method. For k(3 5).ar = 8, d(15 = 8000 [veh],d(®® = 4000 [veh],

the first derivative methods the iterative sequence g, — 0.001 wm-min — 10 w(mmax_ 10,
gter+1 _ dter | der) Ogg (5€)) as( & (s, Oeer (5t€7) ) « We consider the so-calledynamic logit-based user
'7 ( ( ) s ( )) ( (87, D ( >(23) equilibriumas a specific dynamic user equilibrium (see

with the search directioms and with step lengthn [18] for more details), withu = 0.2. Convergence of the
takes place. For the neurosimulation the FAUNO simu- algorithm is verified using theelative dynamic duality
lator is used ([26]). Numerical methods implemented within ~ 92P (s€€ [18] for its definition). If the relative duality
FAUN 1.0 for constrained nonlinear least-squares problems gap?it(e)rf) two(i?e?fnls)ecutlve iterations are close enough, i.e.,
([27]) are sequential quadratic programming (SQP) meth- I [€7°° —¢ | < &max, with a given small positive
ods and generalized Gauss-Newton (GGN) methods. These :‘OUTOE%rSmam the algorithm is terminated. We Séhax
methods can exploit the special structure of the Hessian o .
matrix of & (28], [29], [30]. The SQP and GGN methods * i iﬁ?;;},ydgg‘gﬁdliﬁfkalgngﬁr;:e[kfg'm'ggrﬁﬁ{g@;;egg
can automatically overcome most of the training problems  gmax [km/h], minimum speedd™" [km/h], critical

of ANN such as flat spots or steep canyons of the error Speedgcrlt [km/h], jam densityJ2™ [pcu/km], where
function &. See [26], [31], [32] for more information about pcu denotes passenger car units, and the unrestricted

neurosimulator FAUN 1.0. link capacityC, [pcu/h]. Dynamic link travel time for
an individual user entering link during thek-th time
B. Solution of problem (P) interval a<e ) is defined asrék) = i , where the link
The solution process consists of the following steps: speedB [km/h] is defined a§mulders speed-density
1) For every selection of the toll vectev the so-called function (see [33]):
C-load algorithm ([22]) is used in order to obtain gmax__ agfit_a;"axJék>
the DUE traffic flowsq € DUE(w). The value of the B
objective functionZ (gq(w),w) is computed. it Ja” < BT, N1 [t
2) The set of sample poinfw, Z (q(w),w)) is divided into 8 = gam (98t gpmin (%) *(Jé )717 @)
training patterns and validation patterns and the neu- (ng)*l—(J'aam)
rosimulation introduced in Section I1I-A takes place in if gzt < g < glam
order to approximat&. o _ gmin - if gl > gam
3) This approximation function of is minimized, opti- ) N ) _ )
mal w minimizing Z is found. with critical densityJ$™ [pcu/km] defined as
crit _ crit
For description of the solution process in more detail, see ‘]a. _—(_3a/19a j . .
[18] « Initial link parameters are depicted in Table I.
’ « Linktolls are defined by (2). The results of the problems
IV. CASE STUDIES with M =0,1,2,3 were compared.

The algorithm introduced in Section Il was applied to
In this section the performance of the algorithm introduced e the problem.

in Section Il will be tested on more specific problem of
the type (P). We will consider the so-call&hen network SFast Approximation with Universal Neural networks



THE RESULTING TOLL VALUES (FORK € {1
TIMES FOR CASE STUDY WITH ONE LINK TOLLED
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TABLE |

INITIAL LINK PARAMETERS

PN

8}) AND TOTAL TRAVEL

a Sa 7.9ar1na>< 79é<1:rit 79£rinin Jijaam Ca

1| 75| 150 90 20 50 3500
2| 15 120 70 10 150 | 1500
3|15 | 120 70 10 150 | 1500
4| 10 | 150 90 20 50 3500
51| 15 120 70 10 150 | 1500
6 | 15 | 120 70 10 150 | 1500

TABLE Il

M 6% [eurq] Z[h]
0| §5 50 54 8o | 53667
1| 73 62 52 4o | %8142
[ 11 S e
BRI

A. Case study with one link tolled

The resulting traffic flows for case study with two knkolled,

TABLE Il
THE RESULTING TOLL VALUES (FORK € {1,...,8}) AND TOTAL TRAVEL

TIMES FOR THE CASE STUDY WITH TWO LINKS TOLLED

M toll values - link 1 toll values - link 4 Z [h]

45221

1 ' ’ ' ' ’ ' ’ ' 43790

2 ' ' ' ‘ ’ ‘ ’ ’ 42091

41349

B. Case study with two links tolled

Let both links 1 and 4 be tolled. We will use 80000
samples, with 60000 training data and 20000 validation.data
In Table 1l the resulting toll values for first 8 time inteldsa
and resulting total travel times for the situations with= 0,

M =1 M =2 andM = 3 are depicted. Again, the poly-
nomial tolls improved the system performance remarkably.

Let p; denote the route consisting of links 1 andet p;
denote the route consisting of links3, and 6 let p3 denote
the route consisting of links, 23, and 4 and letp, denote
the route consisting of links, 23, 5, and 6 In Figure 3 the
traffic flows on the routep, p2, p3, and ps are depicted.
Note that quite many travelers use the ropte as its costs
are lower even after imposing tolls on both its links.

The computation time on 16 processors was approximately
52.3 [min].

C. Discussion

After application of the neurosimulation-based algorithm
to solve the problems presented in this section we applied a
very detailed grid search on the same problems. It showed
that the obtained minimal values differed by50percent
maximally (by means ot,-norm) and the global minima
were located in the same points as those computed using the
neurosimulation-based algorithm. One has to be very clarefu
with choosing the right value of the validation error as well
as the sample area, though, to obtain correct results.

The tolls set as polynomial functions of traffic flows

We will first consider the situation with only link 1 tolled, improved the system performance remarkably. Note that
M will vary from 0 to 3. For the solution process introducedyhile these tolls are computed as functions of traffic flows,

in Section 111 40000 sample@v, Z (q(w),w)) were collected. they are imposed as positive values.
For each computations, these samples were splitted into

30000 training data and 10000 validation data.

V. CONCLUSIONS & FUTURE RESEARCH

The resulting toll values for first 8 time intervals and We formulated a very genera| version of the dynamic

values of total travel times for the situation witfl = O,

optimal toll design problem and discussed its properties.

M=1, M=2, andM = 3 are depicted in Table II. Clearly, As the problem is NP-hard and the objective function of
the polynomial tolls result in a better outcome for the roathe road authority generally has many local minima, we
authority. For all variants oM the approximation function proposed a neurosimulation-based approximation alguorith

had many local minima, but only one global minima.

using Neurosimulator FAUN 1.0 to deal with the problem.

The computation time on 16 processors was approximately The algorithm that we proposed is applicable to a wide
10.5 [min]. This time can be geometrically decreased byange of optimal toll design problems, with different DUE
further parallelization.

formulations, and with a wide range of objective functions.



The performance of the proposed algorithm was tested ona)
case study on the Chen network.

As the proposed solution method is an approximation
method, it is important to choose the initial parameters fauns)
neurosimulation very carefully to ensure sufficient accyra
as well as to avoid overtraining. These issues are discus
in [26], [18]. With a proper choice of the criteria for
neurosimulation the algorithm performs very well, as we
showed in the case studies.

Even solving a problem defined on a small network was
quite time consuming. However, the algorithm can be paf’]
allelized, and, therefore, this pitfall can be easily efiated
and the algorithm can be applied on real-size networks.

We showed that the traffic-flow dependent tolls can pef:8l
form remarkably better than the traffic-flow invariant tolls
even with simple polynomial toll functions. Use or more

sophisticated toll functions may bring even better results (1]
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