Short Introduction to Matlab & First Experiment
SubjectChaos & Fractals

Katefina Stankova

September 12, 2012

1 Basics

In Matlab, every variable is stored as a matrix. The follogvdommands show you
how to assign numbers, vectors, and matrices to variablles.Matlab prompt is>.
The commands below are typed in after the prompt, and coadlwdth a carriage
return (enter). The response of Matlab appears on the mextHlease try typing these
commands as you read this document.

>> a=b

5
>> v=[1;4;0]
v =
1
0

>> A=[1,2,3;4,5,6;7,8,9]

A =
1 2 3
4 5 6
7 8 9
>> v?

ans =

1 4 0
>> A°
ans =
1 4 7
2 5 8
3 6 9

Notice that the rows of a matrix are separated by semicolehie the entries on any
given row are separated by commas (spaces may also be used)emtioned above,
each of variables, v, andA is regarded as a matrix; the scadais a 1x 1 matrix, the
vectorvis a 3x 1 matrix, and A is a X 3 matrix.

The size of a matrix can be found using the functidae (4), i.e.,

>> size(A)

>> size(a)
ans =

1 1

The length of a row or a column vector can be found using thetfonlength. Thus:

>> length(v)
ans =
3
>> length([1 2 3 41)

ans =

4
You can also display elements of a matrix/vector:

>> A(2,3)

ans =

>> v(1)

ans =

>> v(2)

ans =

>> v(3)

ans =

>> a(1)
ans =

5
Indices have to be positive integers. Thus:

>> a(0)
7?77 Subscript indices must either be real positive integers or logicals.

If you want to prevent Matlab from displaying what you entgrgou use a semicolon
at the end:

>> x=[1,2,3];

Matlab does not respond because you ended the line with skmjchowever it “re-
members” your definition of.

The following examples demonstrate how complex units aspldyed in Matlab.
They also show that the square root function is a built-ituea

>> sqrt(-1)
ans =

0 + 1.00001

The variableans contains the result of the most recent computation whichtloen be
used as an ordinary variable in subsequent computatiotis€radso built-in functions
real andimag):

>> 2+5-489
ans =
-482
>> sqrt(ans)
ans =
0 +21.95451
>> real(ans)

ans =

>> imag(ans)

ans =

>> sqrt(-482)
ans =
0 +21.9545i
>> imag(ans)
ans =

21.9545

Another built-in variable that is often useful 7s:

>> pi
ans =

3.1416

Only a few digits ofrr are displayed (try typindormat long and then typingi to
see more digits). More significantly, only a finite number afit$ of T are known
to Matlab. This is because Matlab only deals with approxéreithmetics of real
numbers. In particular, numbers smaller than a certaincar@ot be represented by
Matlab. This minimum size is stored in a built-in Matlab \&bie calledeps:

>> eps
ans =

2.2204e-016

Besides the square root function, many other common funstoe predefined. They
include:

abs — absolute value

angle — phase angle of a complex number in radians (bglp angle for details)
real, imag — real part, imaginary part of complex numbers

conj — complex conjugation

round — rounds to the nearest integer

fix — rounds to the nearest integer towards zero (thiss(3.4) returns 3, while
fix(-3.4) returns—3)

floor — rounds to the nearest integer towares
ceil —rounds to the nearest integer towasets
sign — signum function
rem — remainder (needs two input variables, thedp rem for more details)
sin, cos, tan — usual trigonometric functions
asin, acos, atan —usual inverse trigonometric functions
Some examples:

>> cos(2)"2+sin(2) "2

ans =

>> exp(1)
ans =

2.7183
>> log(ans)
ans =

1

Matlab has a comprehensive online help system which insladist of built-in special
functions and routines, as well as a list of other commandsttoh help is available.
To obtain the list just typéelp. To get help on a particular command, typelp
followed by the command. An equally useful way to get helpiage the Matlab Help
window, which is accessed by going to the Help menu at the fdpeoscreen. The
Help window allows you to search the Matlab manuals for infation on the topic of
your choice. For example:

>> help exp

EXP Exponential.
EXP(X) is the exponential of the elements of X, e to the X.
For complex Z=X+ixY, EXP(Z) = EXP(X)*(COS(Y)+i*SIN(Y)).

See also expml, log, loglO, expm, expint.

Overloaded methods:
sym/exp
zpk/exp
tf/exp
codistributed/exp

Reference page in Help browser
doc exp

Another command i&elp help which describes how to find help. To view a few
demonstrations, try typingemo in the Command Window. The demonstrations can
also be accessed from tHelp window.

2 Matrix operations

Using Matlab we can perform standard arithmetic operatamsnatrices: addition,
subtraction, and multiplication, as well as more advan@edputations: finding row

echelon form, finding eigenvalues and eigenvectors of aixetd much more. Some
of these latter operations are useful in studying systerd#fefential equations.
2.1 Matrix arithmetics

If A andB are matrices, then Matlab can compute the sum, differemckthee product
of these two matrices (when these operations are well-d8fifie do this, it is enough
to typeA+B, A-B, andA*B, respectively. Recall that order is important in matrix tiaul
plication:

>> A=[1,2;3,4]
A =

1 2
4

>> B=[0,1;2,0]

B =
0 1
2 0
>> A*B
ans =
4 1
8 3
>> B*A
ans =
3 4
2 4

If Ais a squarer(x n) matrix, then typingA? yields the matrix producA x A. In
i m I . . .
general typindA™ gives them-fold productA A.... A
. . mtmes . .
Generally, applying to a matri& any of the built-in functions returns a matrix of
the same dimensions containing the values of the functidghitasad been applied on
each of its element:

>> A=[pi, pi/2; pi*3, 3*pi/2]

3.1416 1.5708
9.4248 4.7124

>> sin(A)

ans

0.0000 1.0000
0.0000 -1.0000

We say that built-in Matlab functions axectorized, indicating that they can be ef-
fortlessly applied to large vectors or matrices without tieed to write complicated
loops to cycle through the indices, as in some lower-levegmmming languages.
If you want Matlab to multiply two matricea andB that have the same dimension
in a elementwise fashion (rather than the usual matrix plidétion) you should use
the operator. * rather thanx. Similarly, componentwise division of two matrices of
the same dimensions can be accomplished by writingg which creates a matrix
whose entries ar&(i, j)/B(i,j). Matlab also contains several commands to make
it easy to input certain standard types of matrices. For @@nthe built-in function
zeros (m,n) returns arm x n matrix of zeros. Similarlypnes (m,n) returns amxn
matrix of ones. Ifv is a vector ofn components, then the functidiag(v) returns a
squaren x ndiagonal matrix whose entries are all zero with the exceptidhose run-
ning down the diagonal, which contains the corresponditigesnof the vector. The
case wherv=ones (1,n) is especially important because this gives a diagonal matri
with all ones down the diagonal; this is thex n identity matrix. Matlab provides a
special built-in function in this casesye (n) (“eye” sounds like the lettelr, which is
usually used to denote the identity matrix).

In the special case of a matrix with only one row, we have a reato instead
of a matrix, and Matlab provides some specialized ways tatioprtain types of row
vectors that occur frequently in practice. In Matlab, théationlo:step:hi where
lo, step, andhi are numbers, denotes a row vector whose first entty @nd whose
consecutive entries differ bytep, and whose last entry does not excéed For ex-
ample,

>> x=0:1:10

>> y=0.1:0.4:2.1

y =

0.1000 0.5000 0.9000 1.3000 1.7000 2.1000

If the parametestep is omitted, Matlab assumes that it is equal to one:
>> y=0.1:5.1
y =

0.1000 1.1000 2.1000 3.1000 4.1000 5.1000

>> y=1:4
y =
1 2 3 4
>> y=1:4.2
y =
1 2 3 4

2.2 More advanced operations

Matlab can be used to do more advanced operations on matfioegxample, ifA is
a square matrix, then by typingt (A) Matlab computes its determinant.

In solving systems of linear equations, computing both tive @chelon form of a
matrix and finding the eigenvalues and eigenvectors of thieixrere very important
tools. Let's see how to do this using MatlabAfs a matrix then typing

>>rref (A)

leads to a row echelon form &. The particular row echelon form Matlab finds is
called the row-reduced echelon form (row canonical fornfjisTs a matrix for which
all the pivots are 1 and all entries above the pivots are z&gually, a row echelon
form is not unique. For example, the matrix

1 11

0 -1 2
is in row echelon form, but not in row-reduced echelon fornewdver, this matrix is
equivalent (by replacing the first row by the sum of the twospte

1 0 3
0 1 -2

which is in row-reduced form. Matlab would return the latfer any matrix row-
equivalent to it. IfA is a squareé x n matrix, then typing

>> [R,S] = eig(h)

causes Matlab to compute a square n matrixR whose columns are eigenvectors of
A. The other object returned Iy g is a diagonah x n matrix S whose diagonal entries
are the eigenvalues df corresponding to the eigenvectors returned in the columns
of R. Technically speaking, all the columns Bfare eigenvectors of only if A is a
diagonalizable matrix. If the eigenvalues are all distitleénA is diagonalizable, and
sometimes\ is diagonalizable even if it has some repeated eigenvallese more
precise, let us consider an example:

>> A=[1,0;2,2];
>> [R,S]=eig(A)

R =

0 0.4472
1.0000 -0.8944

2 0
0 1

Thus, we see by looking at the diagonal masithat the matrixA has two distinct
eigenvalues, namely = 2 andA = 1. From looking at the matrik we then see that
an eigenvector of corresponding to the eigenvalde= 2 is

v 0
1
and an eigenvector & corresponding to the eigenvaldie= 1 is
Ve 0.4472
—\ —-0.8944)
Of course, eigenvectors are only defined up to multiplicatiball entries by the same
nonzero constant, so, for example,

(%)

is also an eigenvector ¢k corresponding to the eigenvalde= 2. To find inverse
matrix of A, type:

>> inv(4)
ans =

1.000000000000000 0
-1.000000000000000 0.500000000000000

10

If the matrix is singular, its inverse clearly does not exist

>> inv([-2 2; 0 0])
Warning: Matrix is singular to working precision.

ans =
Inf Inf
Inf Inf

3 Graphs

Among the many features of Matlab, the ability to create bsajs one of the most
useful. Here, we will describe how to deal with the usualatitins, including plots
of points in the Cartesian plane and graphs of the built-icfions. To plot a number
of ordered pairgx,y) connected by straight lines, we just build row vecte@ndy
containing thex andy values and ask Matlab to make a plot:

>> x=1:5;
>> y=0:.1:.4;
>> plot(x,y)

Of course, since the vectoxsaandy contain two different coordinates of the same set
of points in the plane, these vectors have to have the sangghletf one wants to
exhibit only the points (without connecting them with sgfati lines) the last command
can be replaced byplot(x,y,’0’). Because the Matlab functions are vectorized,
constructing the needed vectors to graph a built-in fundsceasy. We first construct
a vector of the desired values, then the correspondipgalues come from applying
the built-in function to the vector containing the x values:

>> x=0:.2:2%pi;
>> y=cos(x);
>> plot(x,y)

This produces a plot of the cosine function over the intedvalx < 27. To create a plot
of a function such ag = 2x/(x+ 3), which involves multiplication and division, we
need to use the vectorized versions of these operationngvrix for multiplication
and. / for division:

>> x=-1:.1:1;
>> y=2.%x./(3+x);
>> plot(x,y)

Some useful commands in making more sophisticated plothar®llowing:

xlabel (’x axis label’), ylabel(’y axis label’) labels the horizontal and
vertical axes, respectively, in the current plot.

title(’plot title’) adds atitle to the current plot.

11

axis([a b ¢ d]) changes the viewing window on the current graplato x < b,
c<y<d.

grid adds a rectangular grid to the current plot or eliminate d drit is already
present in the current plot.

hold on freezes the current plot so that the subsequent plots yiddadlab to make
will be displayed on the same axes with the current one.

hold off releases the current plot; the next plot will erase the cifvefore display-
ing.

subplot puts multiple plots in one graphics window.

legend creates a small box inside the current plotting window thstirtguishes and
identifies multiple plots in the same window.

num2str (N) returns the value o as a string, which is helpful in producing infor-
mative titles of graphs.

Here is an example of using some of these commands, relateecton 3.6 in your
book. First, let's make a list of x-values:

>> x=-10:.01:10;
Now we make a plot oF (x) = x* — 2:
>> plot(x,x."2-2)

Matlab opens a new window containing the plot. Suppose nowa to view the
same plot zooming in on the portion withb < x <5 and—2 <y < 2. This modification
of the current plot is easily accomplished using the axisrmoamd:

>> axis([-5 5 -2 2])

You can issue repeatectis commands, in order to try to find the part of the plot that
is the most interesting. To place a background grid on theeatiplot, which can be
helpful in locating the coordinates of points on the plostjuse:

>> grid

You can plot several different graphs on the same axes. Owgedondo this is to plot
the graphs separately and tell Matlab not to erase the dulenin between with the
hold on command:

>> plot(x,x.72-2,°r’)
>> hold on;

>> ¢c= -10;

>> plot(x,x."2+c,’g’)
>> hold off;

Herethe’r’ and’g’ tell Matlab to make the plots in red and green color, respelsti
Another way to get the same result is to use a single plot camdma

12

>> plot(x,sin(x/10)+sin(.09%x),’r’ ,x,cos(x/5),’g’)

Regardless of how the two graphs were put onto the same s&esf you can add a
legend to the plot to indicate which curve is which as follows

>> legend(’sin(x/10)+sin(.09%x)’,’cos(x/5)’)
Adding a title to the plot is also easy:
>> title(’Two curves’)

Finally, while colors are a good way to distinguish differearves on the screen, it
is often easier to distinguish them on a black-and-whitetprit if they correspond to
different kinds of lines. For example,

>> plot(x,sin(x/10)+sin(.09%x),’-’,x,cos(x/5),’ =)

plots the first graph with a solid curve, and the cosine grajth & dashed curve.

It might make sense to change the dimensiong bkre to see the graphs better, to
for examplex=-100:0.01:100 These plot directives can be combined. For example,
’or’ means plot points only, and make them red, white-g’ means connect the
points plotted with a green dashed curve.

4 Creating m-files

So far, everything that we did with Matlab was from the Comoh&indow. The

way that most people interact with Matlab is actually withfiles. These can either
be scripts or functions, the difference of which we will dise later. For now, let us
simply create and save an m-file, and make sure we are workthg icorrect directory.

1. Opening and creating new m-file

(@) From the main Matlab window, go up Ele — New — M-File in older
versions of MatlabFile — New — Script in the newer versions of Matlab.
This should open the editor window and you should have anesgoeen
nameduntitled. You can also typedit at the Command Window. This
will open the editor.

(b) You'll want to save this file. This is a bit tricky in sometés. For now,
save this wherever you want and name thetfdet .m, by either going to
File—~Save As. Note that Matlab scripts and functions should always end
with .m.

2. Creating a content of the script: In the Matlab editor (fileeyou just named
test.m) you can type any Matlab commands you would like. None oféhes
commands will be run until you tell Matlab to run them. In atleords, | can
type up a whole assignment in one Matlab m-file, and simplyitronce. Type
the following lines in to the editor window:

13

a=2;

b=1;

c = 3;

c = atb

d = c+sin(b)
e = 2xd

f = exp(-d)

Save the file again, by either goingfde— Save or by pressindtrl-S.

3. We will now run this file and Matlab will execute each commamyour file one
after another. There are four ways to run this file:

(a) Go to the top of the Matlab editor window and click on theni¢hat looks
like a white box with a green arrow.

(b) Hit F5.
(c) Go toDebug— Runtest.m.

(d) Typetest at the Matlab Command Window. This will ONLY work if your
file (test.m) is in the same directory that Matlab is currently accessing

The last method mentioned here brings up a very good poinyoufcreated
test.min a directory that is NOT where Matlab is currently lookired the top
of the main Matlab window, it shows the Current Directorygrthyou need to do
one of two things. If you try using method (a),(b), (c) thentil should prompt
you to change your directory. Simply click on the Change &ivey button and
your file should run. If you use the last method, then you needxplicitly
change the directory from the main Matlab window to the safaeepthat you
saved this file.

4. Choose one of the methods and run. What happens? Eachaufittmeands that
you did not end with a semicolon should be printed out. Type.viNote that all
of your variables from the script file are defined.

4.1 Creating and running a function file

If you are interested in programming in general, or if youketlto use Matlab for some
other advanced subjects, then you will have to eventual tba learn how to create
and use functions.

1. Create an m-file again: Start off the same as when you cteageript. This
time, let us save this file asyfunction.m. The big difference with function
files is that we generally access them using the Command Win&wo either
savemyfunction.min the same directory as listed in the main Matlab window,
or save it some place else and change the current directdhysttocation. In
fact, the easiest way to make sure the directories are ¢prsgast to run this
emptymyfunction.mnfile as a script.

14

2. Letusfirst create a functionfile. The difference is in the af the word function.
Make the first line of your filamyfunction.m the following:

function myfunction(x)

First, note that we have named this functieyfunction. That is because we
named the m-file containing this functiagyfunction.m. You shouldalways
make the function name and file name the same. Second, nbtedheve(x)
aftermyfunction. What this says is that the function takes an argument, and
you call that argument.

3. Typeclear all inthe Command Window to clear all variables arid to clear
the screen. Now run your function by typiagfunction(5) in the Command
Window. You can put any argument you would like in instead p$ifice this
function doesn’t do anything right now.

4. Now, let us make our function actually do something. Letake whatever the
value ofx is that is coming into the function, and assign the varigbte be
the valuemod (2*x,1) . Do this by typing:y=mod (2*x, 1) under the function
statement. Moreover, change the firstline of the filedfction y=myfunction(x).
Resave you file and run your function three times, by typing

x=0:0.01:1;
subplot(3,1,1);
y=myfunction(x)
plot(x,y);
subplot(3,1,2)
z=myfunction(y);
plot(x,z)
subplot(3,1,3)
w=myfunction(z);
plot(x,w);

in the Command window. Is there anything weird about thi$plo

5. Typewho in the Command Window. What variables are defined? Then type
clear all andtypesho again. Please note a big difference between a script and
a function. In a script, everything we run becomes part oMiaglab space. But
in the function, the variables are only defin&HILE the function is running,
and they are not defined afterwards.

6. This is how you create and run a file with multiple inputfouttarguments.
Change the function file to be:

function [y, z, wl=myfunction(x,number)
%this is a comment

y = mod(2*x,number) ;

z = mod(2*y,number) ;

w = mod(2*z,number) ;

15

Save the file, then run from the command window as:

clear all

close all

[a b c]=myfunction(0:0.001:1,1)
subplot(3,1,1)
plot(0:0.001:1,a)
subplot(3,1,2);
plot(0:0.001:1,Db)
subplot(3,1,3);
plot(0:0.001:1,c)

Typewho to see what variables are saved in the system.

In myfunction.myou now havex andnumber as input arguments andz, and
w as output arguments.

Notice that there is a problem with discontinuity in the dindp function. We
can also create the doubling function in a much more complexmar. Create
file doubling.m with the text

function y=doubling(x)
N=length(x);
for ii=1:N
if (0<=x(ii))&(x(ii)<1/2)
y(ii)=2*x(ii);
else
y(ii)=2*x(ii)-1;
end
end

This is another (and more complex) way how to create the dogitfinction.
Now, type in the command window:

>> y=doubling(x);
>> plot(x,y);

>> y=doubling(x) ;
>> plot(x,y);

>> close all

>> x=0:0.001:1;
>> y=doubling(x) ;
>> plot(x,y);

>> figure(2)

>> x=0:0.01:1;

>> y=doubling(x);
>> plot(x,y)

>> figure(3)

16

>> x=0:0.1:1;
>> y=doubling(x) ;
>> plot(x,y)

Most probably the discontinuity still appears to be ‘contins’. Try now edit
the textdoubling.m as follows:

function y=doubling(x)
N=length(x);
for ii=1:N
if (0<=x(ii))&(x(ii)<1/2)
y(i1)=2*x(ii);
elseif x(ii)==max(x)/2
y(ii)=NaN;
else
y(ii)=2*x(ii)-1;
end
end

Save the changes and run the following commands in the cochmiuaow:

>>close all

>> subplot(3,1,1);x
>> subplot(3,1,2);x
>> subplot(3,1,3);x

0:0.1:1;y=doubling(x); plot(x,y)
0:0.01:1;y=doubling(x); plot(x,y)
0:0.001:1;y=doubling(x); plot(x,y)

Some questions:

e How did we resolve the issue with discontinuity? Can we do & more elegant
manner? (1 point)

e How can we make n-fold composition of the doubling functigndalling the
m-functiondoubling.m?

5 Experiment: The computer may lie
Task

e Read the assignment of the experiment on page 25, inclutimd\btes and
Questions, the hints that | provide below, plus let me knaawifthing is unclear.

e Work on the Procedure using Matlab and write a short docu(nesxtimally two
pages, plus figures, if you wish) about your findings. As yauese graphics, |
am including some hints how to do that below.

e When selecting initial seeds for either function, pleastuide also at least 1 or 2
points that are known to be important ((eventually) fixed ergdic points) and
points close to them.

17

Please comment on what is happening and why is it happenthdivd computer
computations

You can send me the document via email on address
k.stankova@maastrichtuniversity.nl by September 16. You can receive
4 bonus points for complete assignment.

Hints

Having the filedoubling.m, you can create another m-function file ,experi-
ment.m, with text:

function [A]=experiment (x0);
for ii=1:100

x0=mod (2*x0,1) ;

A(ii)=x0; %saves all points on the orbit into a vector
end

ThenA contains whole orbit o£0. You can call the function by typing
>> orbit=experiment(1/3)

This way you can see orbit with initial seed3

Typeformat long in order to see what happens with the orbit with higher ac-
curacy.

Use also the seeds mention at the top of page 25

If drawing the pointgxo, F (Xo)), (F (Xo), F?(X0)),..., use functiorhold on to
keep them drawing into the same figure, together with thegdlthe doubling
function for allx € [0, 1]. However, it might be more useful to draw for each seed
Xo just values oF"(xg) with respect tan.

Even more hints regarding doubling function can be found in
http://unizar.es/galdeano/actas_pau/PDF/089.pdf

18

