
Short Introduction to Matlab & First Experiment
SubjectChaos & Fractals

Kateřina Staňková

September 12, 2012

1 Basics

In Matlab, every variable is stored as a matrix. The following commands show you
how to assign numbers, vectors, and matrices to variables. The Matlab prompt is>>.
The commands below are typed in after the prompt, and concluded with a carriage
return (enter). The response of Matlab appears on the next line. Please try typing these
commands as you read this document.

>> a=5

a =

5

>> v=[1;4;0]

v =

1

4

0

>> A=[1,2,3;4,5,6;7,8,9]

A =

1 2 3

4 5 6

7 8 9

>> v’

1



ans =

1 4 0

>> A’

ans =

1 4 7

2 5 8

3 6 9

Notice that the rows of a matrix are separated by semicolons,while the entries on any
given row are separated by commas (spaces may also be used). As mentioned above,
each of variablesa, v, andA is regarded as a matrix; the scalara is a 1×1 matrix, the
vectorv is a 3×1 matrix, and A is a 3×3 matrix.

The size of a matrix can be found using the functionsize(A), i.e.,

>> size(A)

ans =

3 3

>> size(v)

ans =

3 1

>> size(a)

ans =

1 1

The length of a row or a column vector can be found using the functionlength. Thus:

>> length(v)

ans =

3

>> length([1 2 3 4])

ans =

2



4

You can also display elements of a matrix/vector:

>> A(2,3)

ans =

6

>> v(1)

ans =

1

>> v(2)

ans =

4

>> v(3)

ans =

0

>> a(1)

ans =

5

Indices have to be positive integers. Thus:

>> a(0)

??? Subscript indices must either be real positive integers or logicals.

If you want to prevent Matlab from displaying what you entered, you use a semicolon
at the end:

>> x=[1,2,3];

Matlab does not respond because you ended the line with semicolon, however it “re-
members” your definition ofx.

The following examples demonstrate how complex units are displayed in Matlab.
They also show that the square root function is a built-in feature:

3



>> sqrt(-1)

ans =

0 + 1.0000i

The variableans contains the result of the most recent computation which canthen be
used as an ordinary variable in subsequent computations (notice also built-in functions
real andimag):

>> 2+5-489

ans =

-482

>> sqrt(ans)

ans =

0 +21.9545i

>> real(ans)

ans =

0

>> imag(ans)

ans =

0

>> sqrt(-482)

ans =

0 +21.9545i

>> imag(ans)

ans =

21.9545

Another built-in variable that is often useful isπ :

4



>> pi

ans =

3.1416

Only a few digits ofπ are displayed (try typingformat long and then typingpi to
see more digits). More significantly, only a finite number of digits of π are known
to Matlab. This is because Matlab only deals with approximate arithmetics of real
numbers. In particular, numbers smaller than a certain sizecannot be represented by
Matlab. This minimum size is stored in a built-in Matlab variable calledeps:

>> eps

ans =

2.2204e-016

Besides the square root function, many other common functions are predefined. They
include:

abs – absolute value

angle – phase angle of a complex number in radians (typehelp angle for details)

real, imag – real part, imaginary part of complex numbers

conj – complex conjugation

round – rounds to the nearest integer

fix – rounds to the nearest integer towards zero (thusfix(3.4) returns 3, while
fix(-3.4) returns−3)

floor – rounds to the nearest integer towards−∞

ceil – rounds to the nearest integer towards+∞

sign – signum function

rem – remainder (needs two input variables, typehelp rem for more details)

sin, cos, tan – usual trigonometric functions

asin, acos, atan –usual inverse trigonometric functions

Some examples:

>> cos(2)^2+sin(2)^2

ans =

5



1

>> exp(1)

ans =

2.7183

>> log(ans)

ans =

1

Matlab has a comprehensive online help system which includes a list of built-in special
functions and routines, as well as a list of other commands onwhich help is available.
To obtain the list just typehelp. To get help on a particular command, typehelp
followed by the command. An equally useful way to get help is to use the Matlab Help
window, which is accessed by going to the Help menu at the top of the screen. The
Help window allows you to search the Matlab manuals for information on the topic of
your choice. For example:

>> help exp

EXP Exponential.

EXP(X) is the exponential of the elements of X, e to the X.

For complex Z=X+i*Y, EXP(Z) = EXP(X)*(COS(Y)+i*SIN(Y)).

See also expm1, log, log10, expm, expint.

Overloaded methods:

sym/exp

zpk/exp

tf/exp

codistributed/exp

Reference page in Help browser

doc exp

Another command ishelp help which describes how to find help. To view a few
demonstrations, try typingdemo in the Command Window. The demonstrations can
also be accessed from theHelp window.

2 Matrix operations

Using Matlab we can perform standard arithmetic operationson matrices: addition,
subtraction, and multiplication, as well as more advanced computations: finding row

6



echelon form, finding eigenvalues and eigenvectors of a matrix and much more. Some
of these latter operations are useful in studying systems ofdifferential equations.

2.1 Matrix arithmetics

If A andB are matrices, then Matlab can compute the sum, difference, and the product
of these two matrices (when these operations are well-defined). To do this, it is enough
to typeA+B, A-B, andA*B, respectively. Recall that order is important in matrix multi-
plication:

>> A=[1,2;3,4]

A =

1 2

3 4

>> B=[0,1;2,0]

B =

0 1

2 0

>> A*B

ans =

4 1

8 3

>> B*A

ans =

3 4

2 4

If A is a square (n× n) matrix, then typingA2 yields the matrix productA× A. In
general typingAm gives them-fold productA ·A · . . . ·A

︸ ︷︷ ︸

m times

.

Generally, applying to a matrixA any of the built-in functions returns a matrix of
the same dimensions containing the values of the function asif it had been applied on
each of its element:

>> A=[pi, pi/2; pi*3, 3*pi/2]

7



A =

3.1416 1.5708

9.4248 4.7124

>> sin(A)

ans =

0.0000 1.0000

0.0000 -1.0000

We say that built-in Matlab functions arevectorized, indicating that they can be ef-
fortlessly applied to large vectors or matrices without theneed to write complicated
loops to cycle through the indices, as in some lower-level programming languages.
If you want Matlab to multiply two matricesA andB that have the same dimension
in a elementwise fashion (rather than the usual matrix multiplication) you should use
the operator.* rather than*. Similarly, componentwise division of two matrices of
the same dimensions can be accomplished by writingA./B which creates a matrix
whose entries areA(i,j)/B(i,j). Matlab also contains several commands to make
it easy to input certain standard types of matrices. For example, the built-in function
zeros(m,n) returns anm× n matrix of zeros. Similarly,ones(m,n) returns anm× n
matrix of ones. Ifv is a vector ofn components, then the functiondiag(v) returns a
squaren×n diagonal matrix whose entries are all zero with the exception of those run-
ning down the diagonal, which contains the corresponding entries of the vectorv. The
case whenv=ones(1,n) is especially important because this gives a diagonal matrix
with all ones down the diagonal; this is then× n identity matrix. Matlab provides a
special built-in function in this case:eye(n) (“eye” sounds like the letterI, which is
usually used to denote the identity matrix).

In the special case of a matrix with only one row, we have a row vector instead
of a matrix, and Matlab provides some specialized ways to input certain types of row
vectors that occur frequently in practice. In Matlab, the notationlo:step:hi where
lo, step, andhi are numbers, denotes a row vector whose first entry islo and whose
consecutive entries differ bystep, and whose last entry does not exceedhi. For ex-
ample,

>> x=0:1:10

x =

0 1 2 3 4 5 6 7 8 9 10

>> y=0.1:0.4:2.1

y =

0.1000 0.5000 0.9000 1.3000 1.7000 2.1000

8



If the parameterstep is omitted, Matlab assumes that it is equal to one:

>> y=0.1:5.1

y =

0.1000 1.1000 2.1000 3.1000 4.1000 5.1000

>> y=1:4

y =

1 2 3 4

>> y=1:4.2

y =

1 2 3 4

2.2 More advanced operations

Matlab can be used to do more advanced operations on matrices. For example, ifA is
a square matrix, then by typingdet(A) Matlab computes its determinant.

In solving systems of linear equations, computing both the row echelon form of a
matrix and finding the eigenvalues and eigenvectors of the matrix are very important
tools. Let’s see how to do this using Matlab. IfA is a matrix then typing

>>rref(A)

leads to a row echelon form ofA. The particular row echelon form Matlab finds is
called the row-reduced echelon form (row canonical form). This is a matrix for which
all the pivots are 1 and all entries above the pivots are zero.Usually, a row echelon
form is not unique. For example, the matrix

(
1 1 1
0 −1 2

)

is in row echelon form, but not in row-reduced echelon form. However, this matrix is
equivalent (by replacing the first row by the sum of the two rows) to

(
1 0 3
0 1 −2

)

which is in row-reduced form. Matlab would return the latterfor any matrix row-
equivalent to it. IfA is a squaren× n matrix, then typing

>> [R,S] = eig(A)

9



causes Matlab to compute a squaren× n matrixR whose columns are eigenvectors of
A. The other object returned byeig is a diagonaln×n matrixS whose diagonal entries
are the eigenvalues ofA corresponding to the eigenvectors returned in the columns
of R. Technically speaking, all the columns ofR are eigenvectors ofA only if A is a
diagonalizable matrix. If the eigenvalues are all distinct, thenA is diagonalizable, and
sometimesA is diagonalizable even if it has some repeated eigenvalues.To be more
precise, let us consider an example:

>> A=[1,0;2,2];

>> [R,S]=eig(A)

R =

0 0.4472

1.0000 -0.8944

S =

2 0

0 1

Thus, we see by looking at the diagonal matrixS that the matrixA has two distinct
eigenvalues, namelyλ = 2 andλ = 1. From looking at the matrixR we then see that
an eigenvector ofA corresponding to the eigenvalueλ = 2 is

v =

(
0
1

)

and an eigenvector ofA corresponding to the eigenvalueλ = 1 is

v =

(
0.4472
−0.8944

)

.

Of course, eigenvectors are only defined up to multiplication of all entries by the same
nonzero constant, so, for example,

v =

(
0
−5

)

is also an eigenvector ofA corresponding to the eigenvalueλ = 2. To find inverse
matrix of A, type:

>> inv(A)

ans =

1.000000000000000 0

-1.000000000000000 0.500000000000000

10



If the matrix is singular, its inverse clearly does not exist:

>> inv([-2 2; 0 0])

Warning: Matrix is singular to working precision.

ans =

Inf Inf

Inf Inf

3 Graphs

Among the many features of Matlab, the ability to create graphs is one of the most
useful. Here, we will describe how to deal with the usual situations, including plots
of points in the Cartesian plane and graphs of the built-in functions. To plot a number
of ordered pairs(x,y) connected by straight lines, we just build row vectorsx andy
containing thex andy values and ask Matlab to make a plot:

>> x=1:5;

>> y=0:.1:.4;

>> plot(x,y)

Of course, since the vectorsx andy contain two different coordinates of the same set
of points in the plane, these vectors have to have the same length. If one wants to
exhibit only the points (without connecting them with straight lines) the last command
can be replaced byplot(x,y,’o’). Because the Matlab functions are vectorized,
constructing the needed vectors to graph a built-in function is easy. We first construct
a vector of the desiredx values, then the correspondingy values come from applying
the built-in function to the vectorx containing the x values:

>> x=0:.2:2*pi;

>> y=cos(x);

>> plot(x,y)

This produces a plot of the cosine function over the interval0≤ x≤ 2π . To create a plot
of a function such asy = 2x/(x+ 3), which involves multiplication and division, we
need to use the vectorized versions of these operations, writing .* for multiplication
and./ for division:

>> x=-1:.1:1;

>> y=2.*x./(3+x);

>> plot(x,y)

Some useful commands in making more sophisticated plots arethe following:

xlabel(’x axis label’), ylabel(’y axis label’) labels the horizontal and
vertical axes, respectively, in the current plot.

title(’plot title’) adds a title to the current plot.

11



axis([a b c d]) changes the viewing window on the current graph toa ≤ x ≤ b,
c ≤ y ≤ d.

grid adds a rectangular grid to the current plot or eliminate a grid if it is already
present in the current plot.

hold on freezes the current plot so that the subsequent plots you tell Matlab to make
will be displayed on the same axes with the current one.

hold off releases the current plot; the next plot will erase the current before display-
ing.

subplot puts multiple plots in one graphics window.

legend creates a small box inside the current plotting window that distinguishes and
identifies multiple plots in the same window.

num2str(N) returns the value ofN as a string, which is helpful in producing infor-
mative titles of graphs.

Here is an example of using some of these commands, related toSection 3.6 in your
book. First, let’s make a list of x-values:

>> x=-10:.01:10;

Now we make a plot ofF(x) = x2−2:

>> plot(x,x.^2-2)

Matlab opens a new window containing the plot. Suppose now wewant to view the
same plot zooming in on the portion with−5≤ x≤5 and−2≤ y≤ 2.This modification
of the current plot is easily accomplished using the axis command:

>> axis([-5 5 -2 2])

You can issue repeatedaxis commands, in order to try to find the part of the plot that
is the most interesting. To place a background grid on the current plot, which can be
helpful in locating the coordinates of points on the plot, just use:

>> grid

You can plot several different graphs on the same axes. One way to do this is to plot
the graphs separately and tell Matlab not to erase the current plot in between with the
hold on command:

>> plot(x,x.^2-2,’r’)

>> hold on;

>> c= -10;

>> plot(x,x.^2+c,’g’)

>> hold off;

Here the’r’ and’g’ tell Matlab to make the plots in red and green color, respectively.
Another way to get the same result is to use a single plot command:

12



>> plot(x,sin(x/10)+sin(.09*x),’r’,x,cos(x/5),’g’)

Regardless of how the two graphs were put onto the same set of axes, you can add a
legend to the plot to indicate which curve is which as follows:

>> legend(’sin(x/10)+sin(.09*x)’,’cos(x/5)’)

Adding a title to the plot is also easy:

>> title(’Two curves’)

Finally, while colors are a good way to distinguish different curves on the screen, it
is often easier to distinguish them on a black-and-white printout if they correspond to
different kinds of lines. For example,

>> plot(x,sin(x/10)+sin(.09*x),’-’,x,cos(x/5),’--’)

plots the first graph with a solid curve, and the cosine graph with a dashed curve.
It might make sense to change the dimensions ofx here to see the graphs better, to
for examplex=-100:0.01:100 These plot directives can be combined. For example,
’or’ means plot points only, and make them red, while’--g’ means connect the
points plotted with a green dashed curve.

4 Creating m-files

So far, everything that we did with Matlab was from the Command Window. The
way that most people interact with Matlab is actually with m-files. These can either
be scripts or functions, the difference of which we will discuss later. For now, let us
simply create and save an m-file, and make sure we are working in the correct directory.

1. Opening and creating new m-file

(a) From the main Matlab window, go up toFile → New → M-File in older
versions of Matlab,File → New → Script in the newer versions of Matlab.
This should open the editor window and you should have an empty screen
nameduntitled. You can also typeedit at the Command Window. This
will open the editor.

(b) You’ll want to save this file. This is a bit tricky in sometimes. For now,
save this wherever you want and name the filetest.m, by either going to
File→Save As. Note that Matlab scripts and functions should always end
with .m.

2. Creating a content of the script: In the Matlab editor (thefile you just named
test.m) you can type any Matlab commands you would like. None of these
commands will be run until you tell Matlab to run them. In other words, I can
type up a whole assignment in one Matlab m-file, and simply runit once. Type
the following lines in to the editor window:

13



a=2;

b=1;

c = 3;

c = a+b

d = c+sin(b)

e = 2*d

f = exp(-d)

Save the file again, by either going toFile→Save or by pressingCtrl-S.

3. We will now run this file and Matlab will execute each command in your file one
after another. There are four ways to run this file:

(a) Go to the top of the Matlab editor window and click on the icon that looks
like a white box with a green arrow.

(b) Hit F5.

(c) Go toDebug→ Run test.m.

(d) Typetest at the Matlab Command Window. This will ONLY work if your
file (test.m) is in the same directory that Matlab is currently accessing.

The last method mentioned here brings up a very good point. Ifyou created
test.m in a directory that is NOT where Matlab is currently looking (at the top
of the main Matlab window, it shows the Current Directory) then you need to do
one of two things. If you try using method (a),(b), (c) then Matlab should prompt
you to change your directory. Simply click on the Change Directory button and
your file should run. If you use the last method, then you need to explicitly
change the directory from the main Matlab window to the same place that you
saved this file.

4. Choose one of the methods and run. What happens? Each of thecommands that
you did not end with a semicolon should be printed out. Type who. Note that all
of your variables from the script file are defined.

4.1 Creating and running a function file

If you are interested in programming in general, or if you’d like to use Matlab for some
other advanced subjects, then you will have to eventually have to learn how to create
and use functions.

1. Create an m-file again: Start off the same as when you created a script. This
time, let us save this file asmyfunction.m. The big difference with function
files is that we generally access them using the Command Window. So either
savemyfunction.m in the same directory as listed in the main Matlab window,
or save it some place else and change the current directory tothis location. In
fact, the easiest way to make sure the directories are correct, is just to run this
emptymyfunction.m file as a script.

14



2. Let us first create a function file. The difference is in the use of the word function.
Make the first line of your filemyfunction.m the following:

function myfunction(x)

First, note that we have named this functionmyfunction. That is because we
named the m-file containing this functionmyfunction.m . You shouldalways
make the function name and file name the same. Second, note that we have(x)
after myfunction. What this says is that the function takes an argument, and
you call that argumentx.

3. Typeclear all in the Command Window to clear all variables andclc to clear
the screen. Now run your function by typingmyfunction(5) in the Command
Window. You can put any argument you would like in instead of 5, since this
function doesn’t do anything right now.

4. Now, let us make our function actually do something. Let ustake whatever the
value ofx is that is coming into the function, and assign the variabley to be
the valuemod(2*x,1) . Do this by typing:y=mod(2*x,1) under the function
statement. Moreover, change the first line of the file tofunction y=myfunction(x).
Resave you file and run your function three times, by typing

x=0:0.01:1;

subplot(3,1,1);

y=myfunction(x)

plot(x,y);

subplot(3,1,2)

z=myfunction(y);

plot(x,z)

subplot(3,1,3)

w=myfunction(z);

plot(x,w);

in the Command window. Is there anything weird about this plot?

5. Typewho in the Command Window. What variables are defined? Then type
clear all and typewho again. Please note a big difference between a script and
a function. In a script, everything we run becomes part of theMatlab space. But
in the function, the variables are only definedWHILE the function is running,
and they are not defined afterwards.

6. This is how you create and run a file with multiple input/output arguments.
Change the function file to be:

function [y, z, w]=myfunction(x,number)

%this is a comment

y = mod(2*x,number);

z = mod(2*y,number);

w = mod(2*z,number);

15



Save the file, then run from the command window as:

clear all

close all

[a b c]=myfunction(0:0.001:1,1)

subplot(3,1,1)

plot(0:0.001:1,a)

subplot(3,1,2);

plot(0:0.001:1,b)

subplot(3,1,3);

plot(0:0.001:1,c)

Typewho to see what variables are saved in the system.

In myfunction.m you now havex andnumber as input arguments andy, z, and
w as output arguments.

Notice that there is a problem with discontinuity in the doubling function. We
can also create the doubling function in a much more complex manner. Create
file doubling.m with the text

function y=doubling(x)

N=length(x);

for ii=1:N

if (0<=x(ii))&(x(ii)<1/2)

y(ii)=2*x(ii);

else

y(ii)=2*x(ii)-1;

end

end

This is another (and more complex) way how to create the doubling function.
Now, type in the command window:

>> y=doubling(x);

>> plot(x,y);

>> y=doubling(x);

>> plot(x,y);

>> close all

>> x=0:0.001:1;

>> y=doubling(x);

>> plot(x,y);

>> figure(2)

>> x=0:0.01:1;

>> y=doubling(x);

>> plot(x,y)

>> figure(3)

16



>> x=0:0.1:1;

>> y=doubling(x);

>> plot(x,y)

Most probably the discontinuity still appears to be ‘continuous’. Try now edit
the textdoubling.m as follows:

function y=doubling(x)

N=length(x);

for ii=1:N

if (0<=x(ii))&(x(ii)<1/2)

y(ii)=2*x(ii);

elseif x(ii)==max(x)/2

y(ii)=NaN;

else

y(ii)=2*x(ii)-1;

end

end

Save the changes and run the following commands in the command window:

>>close all

>> subplot(3,1,1);x=0:0.1:1;y=doubling(x); plot(x,y)

>> subplot(3,1,2);x=0:0.01:1;y=doubling(x); plot(x,y)

>> subplot(3,1,3);x=0:0.001:1;y=doubling(x); plot(x,y)

Some questions:

• How did we resolve the issue with discontinuity? Can we do it in a more elegant
manner? (1 point)

• How can we make n-fold composition of the doubling function by calling the
m-functiondoubling.m?

5 Experiment: The computer may lie

Task

• Read the assignment of the experiment on page 25, including the Notes and
Questions, the hints that I provide below, plus let me know ifanything is unclear.

• Work on the Procedure using Matlab and write a short document(maximally two
pages, plus figures, if you wish) about your findings. As you can use graphics, I
am including some hints how to do that below.

• When selecting initial seeds for either function, please include also at least 1 or 2
points that are known to be important ((eventually) fixed or periodic points) and
points close to them.

17



• Please comment on what is happening and why is it happening with the computer
computations

• You can send me the document via email on address
k.stankova@maastrichtuniversity.nl by September 16. You can receive
4 bonus points for complete assignment.

Hints

• Having the filedoubling.m, you can create another m-function file ,experi-
ment.m, with text:

function [A]=experiment(x0);

for ii=1:100

x0=mod(2*x0,1);

A(ii)=x0; %saves all points on the orbit into a vector

end

ThenA contains whole orbit ofx0. You can call the function by typing

>> orbit=experiment(1/3)

This way you can see orbit with initial seed1/3

• Typeformat long in order to see what happens with the orbit with higher ac-
curacy.

• Use also the seeds mention at the top of page 25

• If drawing the points(x0,F(x0)), (F(x0),F2(x0)), . . . , use functionhold on to
keep them drawing into the same figure, together with the plotof the doubling
function for allx ∈ [0,1]. However, it might be more useful to draw for each seed
x0 just values ofFn(x0) with respect ton.

• Even more hints regarding doubling function can be found in
http://unizar.es/galdeano/actas_pau/PDF/089.pdf

18


