Lecture 12: Some Important Continuous Probability Distributions (Part 1)

Kateřina Staňková

Statistics (MAT1003)

May 8, 2012

Outline

- Uniform Distribution
 - Formulation
 - Expectation & Variance
 - Examples
- Plavor of estimation problems . . .
- Exponential Distribution
 - Formulation
 - Expectation etc.

book: Sections

And now ...

- Uniform Distribution
 - Formulation
 - Expectation & Variance
 - Examples
- Plavor of estimation problems . . .
- Exponential Distribution
 - Formulation
 - Expectation etc.

• · · · · · · Formulation

What is uniform PDF?

A RV X is uniformly distributed on interval [a, b], $X \sim U(a, b)$, if

What is uniform PDF?

A RV X is uniformly distributed on interval [a, b], $X \sim U(a, b)$, if

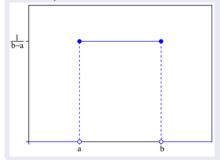
$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & \text{elsewhere} \end{cases}$$

Officiation

What is uniform PDF?

A RV X is uniformly distributed on interval [a, b], $X \sim U(a, b)$, if

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & \text{elsewhere} \end{cases}$$



E(X)

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x$$

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{\infty} x \cdot \frac{1}{b-a} dx$$

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{\infty} x \cdot \frac{1}{b-a} dx$$
$$= \frac{1}{b-a} \left[\frac{x^2}{2} \right]_{x=a}^{b}$$

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{\infty} x \cdot \frac{1}{b-a} dx$$
$$= \frac{1}{b-a} \left[\frac{x^2}{2} \right]_{x=a}^{b} = \frac{1}{b-a} \cdot \frac{1}{2} \left(b^2 - a^2 \right)$$

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{\infty} x \cdot \frac{1}{b-a} dx$$
$$= \frac{1}{b-a} \left[\frac{x^2}{2} \right]_{x=a}^{b} = \frac{1}{b-a} \cdot \frac{1}{2} \left(b^2 - a^2 \right)$$
$$= \frac{1}{2} (a+b)$$

$$E(X) = \int_{-\infty}^{\infty} x \, f(x) \, dx = \int_{-\infty}^{\infty} x \cdot \frac{1}{b-a} \, dx$$

$$= \frac{1}{b-a} \left[\frac{x^2}{2} \right]_{x=a}^{b} = \frac{1}{b-a} \cdot \frac{1}{2} \left(b^2 - a^2 \right)$$

$$= \frac{1}{2} (a+b)$$

$$V(X) = E(X^2) - \mu_x^2 = \dots = \frac{1}{12} (b-a)^2 \quad \text{(check yourself)}$$

Example 1		

oo•oo Examples

Example 1

Let $X, Y \sim U(0,1)$ independently and let $Z = \max(X, Y)$. Compute E(Z).

Example 1

Let $X, Y \sim U(0,1)$ independently and let $Z = \max(X, Y)$. Compute E(Z). Solution:

Let $X, Y \sim U(0, 1)$ independently and let $Z = \max(X, Y)$. Compute E(Z). Solution:

$$F(z) = P(Z \leq z)$$

Let $X, Y \sim U(0, 1)$ independently and let $Z = \max(X, Y)$. Compute E(Z). Solution:

$$F(z) = P(Z \le z) = P(\max(X, Y) \le z)$$

Let $X, Y \sim U(0, 1)$ independently and let $Z = \max(X, Y)$. Compute E(Z). Solution:

$$F(z) = P(Z \le z) = P(\max(X, Y) \le z)$$
$$= P(X \le z, Y \le z)$$

Let $X, Y \sim U(0, 1)$ independently and let $Z = \max(X, Y)$. Compute E(Z). Solution:

$$F(z) = P(Z \le z) = P(\max(X, Y) \le z)$$

= $P(X \le z, Y \le z) = P(X \le z) \cdot P(Y \le z)$

Let $X, Y \sim U(0, 1)$ independently and let $Z = \max(X, Y)$. Compute E(Z). Solution:

$$F(z) = P(Z \le z) = P(\max(X, Y) \le z)$$

$$= P(X \le z, Y \le z) = P(X \le z) \cdot P(Y \le z)$$

$$= \begin{cases} 0, & z < 0 \\ z^2, & 0 \le z \le 1 \\ 1, & z > 1 \end{cases}$$

Let $X, Y \sim U(0,1)$ independently and let $Z = \max(X, Y)$. Compute E(Z). Solution:

First calculate the cumulative distribution of Z:

$$F(z) = P(Z \le z) = P(\max(X, Y) \le z)$$

$$= P(X \le z, Y \le z) = P(X \le z) \cdot P(Y \le z)$$

$$= \begin{cases} 0, & z < 0 \\ z^2, & 0 \le z \le 1 \\ 1, & z > 1 \end{cases}$$

• So for the density we have $f(z) = \begin{cases} 0, & z < 0 \\ 2z, & 0 \le z \le 1 \\ 0, & z > 1 \end{cases}$ (not uniform)

Let $X, Y \sim U(0,1)$ independently and let $Z = \max(X, Y)$. Compute E(Z). Solution:

$$F(z) = P(Z \le z) = P(\max(X, Y) \le z)$$

$$= P(X \le z, Y \le z) = P(X \le z) \cdot P(Y \le z)$$

$$= \begin{cases} 0, & z < 0 \\ z^2, & 0 \le z \le 1 \\ 1, & z > 1 \end{cases}$$

- So for the density we have $f(z) = \begin{cases} 0, & z < 0 \\ 2z, & 0 \le z \le 1 \\ 0, & z > 1 \end{cases}$ (not uniform)
- Hence $E(Z) = \int_0^1 z \cdot 2z \, dz = \left[\frac{2}{3} z^3\right]_{z=0}^1 = \frac{2}{3}$

ooo•o Examples

Example 2

Let $X, Y \sim U(0, 10)$ independently and let Z = X + Y. Compute f(z).

Example 2

Let $X, Y \sim U(0, 10)$ independently and let Z = X + Y. Compute f(z). Solution:

Let $X, Y \sim U(0, 10)$ independently and let Z = X + Y. Compute f(z). Solution:

$$F(z) = P(Z \leq z)$$

Let $X, Y \sim U(0, 10)$ independently and let Z = X + Y. Compute f(z). Solution:

$$F(z) = P(Z \le z) = P(X + Y \le z)$$

Let $X, Y \sim U(0, 10)$ independently and let Z = X + Y. Compute f(z). Solution:

$$F(z) = P(Z \le z) = P(X + Y \le z)$$

= $\int_0^{10} P(X + Y \le z | Y = y) \cdot \frac{1}{10} dy$

Let $X, Y \sim U(0, 10)$ independently and let Z = X + Y. Compute f(z). Solution:

$$F(z) = P(Z \le z) = P(X + Y \le z)$$

$$= \int_0^{10} P(X + Y \le z | Y = y) \cdot \frac{1}{10} \, dy = \int_0^{10} P(X \le z - y) \, \frac{1}{10} \, dy$$

Let $X, Y \sim U(0, 10)$ independently and let Z = X + Y. Compute f(z). Solution:

• First calculate the cumulative distribution of Z:

$$F(z) = P(Z \le z) = P(X + Y \le z)$$

$$= \int_0^{10} P(X + Y \le z | Y = y) \cdot \frac{1}{10} \, dy = \int_0^{10} P(X \le z - y) \, \frac{1}{10} \, dy$$

Case z ∈ [0, 10]

Let $X, Y \sim U(0, 10)$ independently and let Z = X + Y. Compute f(z). Solution:

$$F(z) = P(Z \le z) = P(X + Y \le z)$$

$$= \int_0^{10} P(X + Y \le z | Y = y) \cdot \frac{1}{10} \, dy = \int_0^{10} P(X \le z - y) \, \frac{1}{10} \, dy$$

• Case
$$z \in [0, 10]$$

= $\int_0^z \frac{z-y}{10} \cdot \frac{1}{10} dy$

Let $X, Y \sim U(0, 10)$ independently and let Z = X + Y. Compute f(z). Solution:

$$F(z) = P(Z \le z) = P(X + Y \le z)$$

$$= \int_0^{10} P(X + Y \le z | Y = y) \cdot \frac{1}{10} \, dy = \int_0^{10} P(X \le z - y) \, \frac{1}{10} \, dy$$

• Case
$$z \in [0, 10]$$

= $\int_0^z \frac{z-y}{10} \cdot \frac{1}{10} dy = \frac{1}{100} \left[zy - \frac{1}{2}y^2 \right]_{y=0}^z$

Let $X, Y \sim U(0, 10)$ independently and let Z = X + Y. Compute f(z). Solution:

$$F(z) = P(Z \le z) = P(X + Y \le z)$$

$$= \int_0^{10} P(X + Y \le z | Y = y) \cdot \frac{1}{10} \, dy = \int_0^{10} P(X \le z - y) \, \frac{1}{10} \, dy$$

• Case
$$z \in [0, 10]$$

= $\int_0^z \frac{z-y}{10} \cdot \frac{1}{10} dy = \frac{1}{100} \left[zy - \frac{1}{2}y^2 \right]_{y=0}^z = \frac{1}{200}z^2$

Let $X, Y \sim U(0, 10)$ independently and let Z = X + Y. Compute f(z). Solution:

First calculate the cumulative distribution of Z:

$$F(z) = P(Z \le z) = P(X + Y \le z)$$

$$= \int_0^{10} P(X + Y \le z | Y = y) \cdot \frac{1}{10} \, dy = \int_0^{10} P(X \le z - y) \, \frac{1}{10} \, dy$$

• Case
$$z \in [0, 10]$$

= $\int_0^z \frac{z-y}{10} \cdot \frac{1}{10} dy = \frac{1}{100} \left[zy - \frac{1}{2}y^2 \right]_{y=0}^z = \frac{1}{200}z^2$

Case z ∈ [10, 20]

Let $X, Y \sim U(0, 10)$ independently and let Z = X + Y. Compute f(z). Solution:

• First calculate the cumulative distribution of Z:

$$F(z) = P(Z \le z) = P(X + Y \le z)$$

$$= \int_0^{10} P(X + Y \le z | Y = y) \cdot \frac{1}{10} \, dy = \int_0^{10} P(X \le z - y) \, \frac{1}{10} \, dy$$

• Case
$$z \in [0, 10]$$

= $\int_0^z \frac{z-y}{10} \cdot \frac{1}{10} dy = \frac{1}{100} \left[z y - \frac{1}{2} y^2 \right]_{y=0}^z = \frac{1}{200} z^2$

• Case
$$z \in [10, 20]$$

= $\int_0^{z-10} \frac{1}{10} dy + \int_{z-10}^{10} \frac{z-y}{10} \cdot \frac{1}{10} dy$

Let $X, Y \sim U(0, 10)$ independently and let Z = X + Y. Compute f(z). Solution:

• First calculate the cumulative distribution of Z:

$$F(z) = P(Z \le z) = P(X + Y \le z)$$

$$= \int_0^{10} P(X + Y \le z | Y = y) \cdot \frac{1}{10} \, dy = \int_0^{10} P(X \le z - y) \, \frac{1}{10} \, dy$$

• Case
$$z \in [0, 10]$$

= $\int_0^z \frac{z-y}{10} \cdot \frac{1}{10} dy = \frac{1}{100} \left[z y - \frac{1}{2} y^2 \right]_{y=0}^z = \frac{1}{200} z^2$

• Case
$$z \in [10, 20]$$

= $\int_0^{z-10} \frac{1}{10} dy + \int_{z-10}^{10} \frac{z-y}{10} \cdot \frac{1}{10} dy = \left[\frac{1}{10}(z-10) + \frac{1}{100}(zy - \frac{y^2}{2})\right]_{y=z-10}^{10}$

Let $X, Y \sim U(0, 10)$ independently and let Z = X + Y. Compute f(z). Solution:

• First calculate the cumulative distribution of Z:

$$F(z) = P(Z \le z) = P(X + Y \le z)$$

$$= \int_0^{10} P(X + Y \le z | Y = y) \cdot \frac{1}{10} \, dy = \int_0^{10} P(X \le z - y) \, \frac{1}{10} \, dy$$

• Case
$$z \in [0, 10]$$

= $\int_0^z \frac{z-y}{10} \cdot \frac{1}{10} dy = \frac{1}{100} \left[z y - \frac{1}{2} y^2 \right]_{y=0}^z = \frac{1}{200} z^2$

• Case
$$z \in [10, 20]$$

$$= \int_0^{z-10} \frac{1}{10} \, dy + \int_{z-10}^{10} \frac{z-y}{10} \cdot \frac{1}{10} \, dy = \left[\frac{1}{10} (z-10) + \frac{1}{100} (z \, y - \frac{y^2}{2}) \right]_{y=z-10}^{10} = \dots = \frac{1}{100} (20 \, z - \frac{z^2}{2} - 100)$$

Example 2 (cont.) F(z)

Example 2 (cont.)

$$F(z) = \begin{cases} 0, & z < 0\\ \frac{1}{200}z^2, & 0 \le z \le 10\\ \frac{1}{100}\left(20z - \frac{z^2}{2} - 100\right), & 10 \le z \le 20\\ 1, & z > 20 \end{cases}$$

Example 2 (cont.)

$$F(z) = \begin{cases} 0, & z < 0 \\ \frac{1}{200}z^2, & 0 \le z \le 10 \\ \frac{1}{100} \left(20z - \frac{z^2}{2} - 100\right), & 10 \le z \le 20 \\ 1, & z > 20 \end{cases}$$

Example 2 (cont.)

$$F(z) = \begin{cases} 0, & z < 0 \\ \frac{1}{200}z^2, & 0 \le z \le 10 \\ \frac{1}{100} \left(20z - \frac{z^2}{2} - 100\right), & 10 \le z \le 20 \\ 1, & z > 20 \end{cases}$$

$$f(z) = \begin{cases} 0, & z < 0, \\ \frac{z}{100}, & 0 \le z \le 10 \\ \frac{1}{100} (20 - z), & 10 \le z \le 20 \\ 0, & z > 20 \end{cases}$$

And now ...

- Uniform Distribution
 - Formulation
 - Expectation & Variance
 - Examples
- Plavor of estimation problems . . .
- Exponential Distribution
 - Formulation
 - Expectation etc.

Let $X \sim U(0, L)$, with L unknown

We want to estimate L

- We want to estimate L
- For that purpose we draw $100 \times \text{independently from } U(0, L)$

- We want to estimate L
- For that purpose we draw $100 \times \text{independently from } U(0, L)$
- Let X_i be the RV corresponding to the ith drawing

- We want to estimate L
- For that purpose we draw $100 \times \text{independently from } U(0, L)$
- Let X_i be the RV corresponding to the ith drawing
- Then $X_1, X_2, ..., X_{100}$ are independent and indentically distributed (IID) according to U(0, L)

- We want to estimate L
- For that purpose we draw $100 \times \text{independently from } U(0, L)$
- Let X_i be the RV corresponding to the ith drawing
- Then $X_1, X_2, ..., X_{100}$ are independent and indentically distributed (IID) according to U(0, L)
- We call X_1, X_2, \dots, X_{100} a random sample

- We want to estimate L
- For that purpose we draw $100 \times \text{independently from } U(0, L)$
- Let X_i be the RV corresponding to the ith drawing
- Then $X_1, X_2, ..., X_{100}$ are independent and indentically distributed (IID) according to U(0, L)
- We call X_1, X_2, \dots, X_{100} a random sample
- After 100 drawings we have 100 realizations, denoted by X_1, X_2, \dots, X_{100}

• Define $Z = \max\{X_1, ..., X_{100}\}$

- Define $Z = \max\{X_1, ..., X_{100}\}$
- Then $F(z) = P(Z \le z) = \prod_{i=1}^{100} P(X_i \le z) = \left(\frac{z}{L}\right)^{100}, 0 \le z \le L$

- Define $Z = \max\{X_1, ..., X_{100}\}$
- Then $F(z) = P(Z \le z) = \prod_{i=1}^{100} P(X_i \le z) = (\frac{z}{L})^{100}, 0 \le z \le L$
- Hence $f(z) = F'(z) = 100 \cdot (\frac{z}{L})^{99} \cdot \frac{1}{L}$

Uniform Distribution

- Define $Z = \max\{X_1, ..., X_{100}\}$
- Then $F(z) = P(Z \le z) = \prod_{i=1}^{100} P(X_i \le z) = (\frac{z}{L})^{100}, 0 \le z \le L$
- Hence $f(z) = F'(z) = 100 \cdot (\frac{z}{L})^{99} \cdot \frac{1}{L}$
- Then $E(Z) = \int_0^L z \cdot 100 \cdot \left(\frac{z}{L}\right)^{99} \cdot \frac{1}{L} dz = 100 \int_0^L \left(\frac{z}{L}\right)^{100} dz$ = $\left[100 \cdot \frac{1}{101} \left(\frac{z}{L}\right)^{101} \cdot L\right]_{z=0}^L = \frac{100}{101} L$

- Define $Z = \max\{X_1, ..., X_{100}\}$
- Then $F(z) = P(Z \le z) = \prod_{i=1}^{100} P(X_i \le z) = (\frac{z}{L})^{100}, 0 \le z \le L$
- Hence $f(z) = F'(z) = 100 \cdot (\frac{z}{L})^{99} \cdot \frac{1}{L}$
- Then $E(Z) = \int_0^L z \cdot 100 \cdot \left(\frac{z}{L}\right)^{99} \cdot \frac{1}{L} dz = 100 \int_0^L \left(\frac{z}{L}\right)^{100} dz$ = $\left[100 \cdot \frac{1}{101} \left(\frac{z}{L}\right)^{101} \cdot L\right]_{z=0}^L = \frac{100}{101} L$
- As an estimate for *L* we now define the RV $B = \frac{101}{100} \cdot Z$. We have E(B) = L

- Define $Z = \max\{X_1, ..., X_{100}\}$
- Then $F(z) = P(Z \le z) = \prod_{i=1}^{100} P(X_i \le z) = (\frac{z}{L})^{100}, 0 \le z \le L$
- Hence $f(z) = F'(z) = 100 \cdot (\frac{z}{L})^{99} \cdot \frac{1}{L}$
- Then $E(Z) = \int_0^L z \cdot 100 \cdot \left(\frac{z}{L}\right)^{99} \cdot \frac{1}{L} dz = 100 \int_0^L \left(\frac{z}{L}\right)^{100} dz$ = $\left[100 \cdot \frac{1}{101} \left(\frac{z}{L}\right)^{101} \cdot L\right]_{z=0}^L = \frac{100}{101} L$
- As an estimate for *L* we now define the RV $B = \frac{101}{100} \cdot Z$. We have E(B) = L
- B is called an unbiased estimator for L

Es	TIM	-17	96
_			~

Point estimate - solution is a single point

- Point estimate solution is a single point
- Interval estimate solution is an interval

- Point estimate solution is a single point
- Interval estimate solution is an interval

2 common point estimates

• The sample mean - $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

- Point estimate solution is a single point
- Interval estimate solution is an interval

2 common point estimates

- The sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- The sample variance $\bar{S}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$

- Point estimate solution is a single point
- Interval estimate solution is an interval

2 common point estimates

- The sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- The sample variance $\bar{S}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$

Observation 1

•
$$E(\bar{X}) = E(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n}\sum_{i=1}^{n}E(X_i) = \frac{1}{n}\sum_{i=1}^{n}\mu_X = \frac{1}{n}\cdot n\cdot \mu_X = \mu_X$$

Observation 2		

Let
$$X_1, \ldots, X_n$$
 be IID with $\mu = E(X), \sigma^2 = V(X)$. Then

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = V(\frac{1}{n}X_{1} + \frac{1}{n}X_{2} + \ldots + \frac{1}{n}X_{n})$$

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = V(\frac{1}{n}X_{1} + \frac{1}{n}X_{2} + \dots + \frac{1}{n}X_{n})$$

$$= \frac{1}{n^{2}}V(X_{1}) + \frac{1}{n^{2}}V(X_{2}) + \dots + \frac{1}{n^{2}}V(X_{n})$$

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = V(\frac{1}{n}X_{1} + \frac{1}{n}X_{2} + \dots + \frac{1}{n}X_{n})$$

$$= \frac{1}{n^{2}}V(X_{1}) + \frac{1}{n^{2}}V(X_{2}) + \dots + \frac{1}{n^{2}}V(X_{n})$$

$$= \frac{1}{n^{2}} \cdot n \cdot V(X_{i})$$

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = V(\frac{1}{n}X_{1} + \frac{1}{n}X_{2} + \dots + \frac{1}{n}X_{n})$$

$$= \frac{1}{n^{2}}V(X_{1}) + \frac{1}{n^{2}}V(X_{2}) + \dots + \frac{1}{n^{2}}V(X_{n})$$

$$= \frac{1}{n^{2}} \cdot n \cdot V(X_{i}) = \frac{1}{n} \cdot V(X_{i})$$

Observation 2

Let X_1, \ldots, X_n be IID with $\mu = E(X), \sigma^2 = V(X)$. Then

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = V(\frac{1}{n}X_{1} + \frac{1}{n}X_{2} + \dots + \frac{1}{n}X_{n})$$

$$= \frac{1}{n^{2}}V(X_{1}) + \frac{1}{n^{2}}V(X_{2}) + \dots + \frac{1}{n^{2}}V(X_{n})$$

$$= \frac{1}{n^{2}} \cdot n \cdot V(X_{i}) = \frac{1}{n} \cdot V(X_{i}) = \frac{1}{n}\sigma^{2}$$

Observation 2

Let X_1, \ldots, X_n be IID with $\mu = E(X), \sigma^2 = V(X)$. Then

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = V(\frac{1}{n}X_{1} + \frac{1}{n}X_{2} + \dots + \frac{1}{n}X_{n})$$

$$= \frac{1}{n^{2}}V(X_{1}) + \frac{1}{n^{2}}V(X_{2}) + \dots + \frac{1}{n^{2}}V(X_{n})$$

$$= \frac{1}{n^{2}} \cdot n \cdot V(X_{i}) = \frac{1}{n} \cdot V(X_{i}) = \frac{1}{n}\sigma^{2}$$

Notice that
$$V(\bar{X}) = E\left\{(X - \mu)^2\right\} \neq S^2 \approx E\left\{(X_i - \bar{X})^2\right\}$$
 variance of sample mean sample variance

Observation 2

Let X_1, \ldots, X_n be IID with $\mu = E(X), \sigma^2 = V(X)$. Then

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = V(\frac{1}{n}X_{1} + \frac{1}{n}X_{2} + \dots + \frac{1}{n}X_{n})$$

$$= \frac{1}{n^{2}}V(X_{1}) + \frac{1}{n^{2}}V(X_{2}) + \dots + \frac{1}{n^{2}}V(X_{n})$$

$$= \frac{1}{n^{2}} \cdot n \cdot V(X_{i}) = \frac{1}{n} \cdot V(X_{i}) = \frac{1}{n}\sigma^{2}$$

Notice that
$$V(\bar{X}) = E\left\{(X - \mu)^2\right\} \neq S^2 \approx E\left\{(X_i - \bar{X})^2\right\}$$

variance of sample mean sample variance

Moreover, Observation 2 is independent of the actual distribution of the X_i

Let X have the following distribution: $P(X=1) = \bar{p}, P(X=0) = 1 - \bar{p}$ with \bar{p} unknown (0 elsewhere). Estimate \bar{p}

• Notice that $\mu_X = E(X) = \bar{p}$, $V(X) = \bar{p} - \bar{p}^2 = \bar{p}(1 - \bar{p})$

- Notice that $\mu_X = E(X) = \bar{p}, \ V(X) = \bar{p} \bar{p}^2 = \bar{p}(1 \bar{p})$
- We draw X_1, \ldots, X_n from this distribution. Then:

- Notice that $\mu_X = E(X) = \bar{p}$, $V(X) = \bar{p} \bar{p}^2 = \bar{p}(1 \bar{p})$
- We draw X_1, \ldots, X_n from this distribution. Then:

•
$$E(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \cdot n \cdot E(X) = \bar{p}$$

- Notice that $\mu_X = E(X) = \bar{p}, \ V(X) = \bar{p} \bar{p}^2 = \bar{p}(1 \bar{p})$
- We draw X_1, \ldots, X_n from this distribution. Then:
 - $E(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \cdot n \cdot E(X) = \bar{p} \Rightarrow \bar{X}$ unbiased estimator for $\mu_X = \bar{p}$

- Notice that $\mu_X = E(X) = \bar{p}$, $V(X) = \bar{p} \bar{p}^2 = \bar{p}(1 \bar{p})$
- We draw X_1, \ldots, X_n from this distribution. Then:
 - $E(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \cdot n \cdot E(X) = \bar{p} \Rightarrow \bar{X}$ unbiased estimator for $\mu_X = \bar{p}$
 - $V(\bar{X}) = \frac{1}{n^2} \sum_{i=1}^n V(X_i) = \frac{1}{n^2} \cdot n \cdot \bar{p}(1 \bar{p}) = \frac{1}{n} \cdot \bar{p}(1 \bar{p})$

- Notice that $\mu_X = E(X) = \bar{p}, \ V(X) = \bar{p} \bar{p}^2 = \bar{p}(1 \bar{p})$
- We draw X_1, \ldots, X_n from this distribution. Then:
 - $E(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \cdot n \cdot E(X) = \bar{p} \Rightarrow \bar{X}$ unbiased estimator for $\mu_X = \bar{p}$
 - $V(\bar{X}) = \frac{1}{n^2} \sum_{i=1}^n V(X_i) = \frac{1}{n^2} \cdot n \cdot \bar{p}(1-\bar{p}) = \frac{1}{n} \cdot \bar{p}(1-\bar{p})$ HW: What is the probability distribution of $\sum_{i=1}^n X_i$?

And now ...

- Uniform Distribution
 - Formulation
 - Expectation & Variance
 - Examples
- 2 Flavor of estimation problems . . .
- 3 Exponential Distribution
 - Formulation
 - Expectation etc.

Formulation

Formulation

What is exponential PDF?

A RV X is exponentially distributed with parameter λ (book: parameter $1/\beta$), $X \sim \text{Exp}(\lambda)$, if

What is exponential PDF?

A RV X is exponentially distributed with parameter λ (book: parameter $1/\beta$), $X \sim \text{Exp}(\lambda)$, if

$$f(x) = \begin{cases} \lambda \exp(-\lambda x), & x > 0, \\ 0, & \text{elsewhere} \end{cases}$$

What is exponential PDF?

A RV X is exponentially distributed with parameter λ (book: parameter $1/\beta$), $X \sim \operatorname{Exp}(\lambda)$, if

$$f(x) = \begin{cases} \lambda \exp(-\lambda x), & x > 0, \\ 0, & \text{elsewhere} \end{cases}$$

$$\frac{1.5}{1.4}$$

$$\frac{1.3}{1.2}$$

$$\frac{1.1}{1.2}$$

$$\frac{1.1}{1.3}$$

$$\frac{1.2}{\lambda = 1.5}$$

$$\frac{1.3}{\lambda = 1.5}$$

$$\frac{1.4}{\lambda = 1.5}$$

$$\frac{1.5}{\lambda = 1.5}$$

$$\frac{1.5}{\lambda = 1.5}$$

$$\frac{1.5}{\lambda = 1.5}$$

2

3

Computation of E(X), F(X) and V(X) for exponential distribution

E(X)

$$E(X) = \int_0^\infty x \, f(x) \, \mathrm{d}x$$

$$E(X) = \int_0^\infty x \, f(x) \, dx = \int_0^\infty x \cdot \lambda \, \exp(-\lambda x) \, dx$$

$$E(X) = \int_0^\infty x f(x) dx = \int_0^\infty x \cdot \lambda \exp(-\lambda x) dx$$
$$\stackrel{bp}{=} [-x \cdot \exp(-\lambda x)]_{x=0}^\infty + \int_0^\infty \exp(-\lambda x) dx$$

$$E(X) = \int_0^\infty x f(x) dx = \int_0^\infty x \cdot \lambda \exp(-\lambda x) dx$$

$$\stackrel{bp}{=} [-x \cdot \exp(-\lambda x)]_{x=0}^\infty + \int_0^\infty \exp(-\lambda x) dx$$

$$= -0 + 0 + \left[-\frac{1}{\lambda} \cdot \exp(-\lambda x) \right]_{x=0}^\infty$$

$$E(X) = \int_0^\infty x f(x) dx = \int_0^\infty x \cdot \lambda \exp(-\lambda x) dx$$

$$\stackrel{bp}{=} [-x \cdot \exp(-\lambda x)]_{x=0}^\infty + \int_0^\infty \exp(-\lambda x) dx$$

$$= -0 + 0 + \left[-\frac{1}{\lambda} \cdot \exp(-\lambda x) \right]_{x=0}^\infty = \frac{1}{\lambda}$$

$$E(X) = \int_0^\infty x \, f(x) \, \mathrm{d}x = \int_0^\infty x \cdot \lambda \, \exp(-\lambda x) \, \mathrm{d}x$$

$$\stackrel{bp}{=} \left[-x \cdot \exp(-\lambda x) \right]_{x=0}^\infty + \int_0^\infty \exp(-\lambda x) \, \mathrm{d}x$$

$$= -0 + 0 + \left[-\frac{1}{\lambda} \cdot \exp(-\lambda x) \right]_{x=0}^\infty = \frac{1}{\lambda}$$

$$F(x) = 1 - \exp(-\lambda x) \quad \text{for } x > 0 \text{ and } 0 \text{ elsewhere}$$

$$E(X) = \int_0^\infty x \, f(x) \, \mathrm{d}x = \int_0^\infty x \cdot \lambda \, \exp(-\lambda x) \, \mathrm{d}x$$

$$\stackrel{bp}{=} \left[-x \cdot \exp(-\lambda x) \right]_{x=0}^\infty + \int_0^\infty \exp(-\lambda x) \, \mathrm{d}x$$

$$= -0 + 0 + \left[-\frac{1}{\lambda} \cdot \exp(-\lambda x) \right]_{x=0}^\infty = \frac{1}{\lambda}$$

$$F(x) = 1 - \exp(-\lambda x) \quad \text{for } x > 0 \text{ and } 0 \text{ elsewhere}$$

$$E(X^2) = \frac{2}{\lambda^2}$$

$$E(X) = \int_0^\infty x \, f(x) \, \mathrm{d}x = \int_0^\infty x \cdot \lambda \, \exp(-\lambda x) \, \mathrm{d}x$$

$$\stackrel{bp}{=} \left[-x \cdot \exp(-\lambda x) \right]_{x=0}^\infty + \int_0^\infty \exp(-\lambda x) \, \mathrm{d}x$$

$$= -0 + 0 + \left[-\frac{1}{\lambda} \cdot \exp(-\lambda x) \right]_{x=0}^\infty = \frac{1}{\lambda}$$

$$F(x) = 1 - \exp(-\lambda x) \quad \text{for } x > 0 \text{ and } 0 \text{ elsewhere}$$

$$E(X^2) = \frac{2}{\lambda^2}$$

$$V(X) = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$$