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Example 3: Estimation in a uniform distribution U(0,L)

Let X ∼ U(0, L), with L unknown

We want to estimate L

For that purpose we draw 100× independently from U(0, L)

Let Xi be the RV corresponding to the i th drawing

Then X1,X2, . . . ,X100 are independent and indentically distributed (IID)
according to U(0, L)

We call X1,X2, . . . ,X100 a random sample

After 100 drawings we have 100 realizations, denoted by
X1,X2, . . . ,X100
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Example 3: Estimation in a uniform distribution U(0,L)
(cont.)

Define Z = max{X1, . . . ,X100}

Then F (z) = P(Z ≤ z) =
∏100

i=1 P(Xi ≤ z) =
( z

L

)100
, 0 ≤ z ≤ L

Hence f (z) = F ′(z) = 100 ·
( z

L

)99 · 1
L

Then E(Z ) =
∫ L

0 z · 100 ·
( z

L

)99 · 1
L dz = 100

∫ L
0

( z
L

)100 dz

=
[
100 · 1

101

( z
L

)101 · L
]L

z=0
= 100

101 L

As an estimate for L we now define the RV B = 101
100 · Z . We have

E(B) = L

B is called an unbiased estimator for L
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Estimates

Point estimate - solution is a single point

Interval estimate - solution is an interval

2 common point estimates

The sample mean - X̄ = 1
n

∑n
i=1 Xi

The sample variance - S̄2 = 1
n−1

∑n
i=1(Xi − X̄ )2

Observation 1

E(X̄ ) = E
( 1

n

∑n
i=1 Xi

)
= 1

n

∑n
i=1 E(Xi ) = 1

n

∑n
i=1 µX = 1

n · n · µX = µX
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Observation 2

Let X1, . . . ,Xn be IID with µ = E(Xi ), σ
2 = V (Xi ). Then

V (X̄ )

= V

(
1
n

n∑
i=1

Xi

)
= V (

1
n

X1 +
1
n

X2 + . . .+
1
n

Xn)

=
1
n2 V (X1) +

1
n2 V (X2) + . . .+

1
n2 V (Xn)

=
1
n2 · n · V (Xi ) =

1
n
· V (Xi ) =

1
n
σ2

Notice that V (X̄ ) = E
{

(X − µ)2
}

︸ ︷︷ ︸
variance of sample mean

6= S̄2 ≈ E
{

(Xi − X̄ )2
}

︸ ︷︷ ︸
sample variance

Moreover, Observation 2 is independent of the actual distribution of the Xi
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Example 4

Let X have the following distribution: P(X = 1) = p̄, P(X = 0) = 1− p̄ with p̄
unknown (0 elsewhere). Estimate p̄

Notice that µX = E(X ) = p̄, V (X ) = p̄ − p̄2 = p̄(1− p̄)

We draw X1, . . . ,Xn from this distribution. Then:

E(X̄ ) = 1
n

∑n
i=1 E(Xi ) = 1

n · n · E(X ) = p̄

⇒ X̄ unbiased
estimator for µX = p̄

V (X̄ ) = 1
n2

∑n
i=1 V (Xi ) = 1

n2 · n · p̄(1− p̄) = 1
n · p̄(1− p̄)

HW: What is the probability distribution of
∑n

i=1 Xi?
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We draw X1, . . . ,Xn from this distribution. Then:

E(X̄ ) = 1
n

∑n
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⇒ X̄ unbiased
estimator for µX = p̄
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Expectation etc.
Application of the Exponential distribution
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Formulation

What is exponential PDF?
A RV X is exponentially distributed with parameter λ (book: parameter 1/β ),
X ∼ Exp(λ), if

f (x) =

{
λ exp(−λ x), x > 0,

0, elsewhere
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Expectation etc.

Computation of E(X ), F (X ) and V (X ) for the Exponential
distribution

E(X )

=

∫ ∞
0

x f (x) dx =

∫ ∞
0

x · λ exp(−λ x) dx

bp
= [−x · exp(−λ x)]∞x=0 +

∫ ∞
0

exp(−λ x)dx

= −0 + 0 +

[
−1
λ
· exp(−λ x)

]∞
x=0

=
1
λ

F (x) = 1− exp(−λ x) for x > 0 and 0 elsewhere

E(X 2) =
2
λ2

V (X ) =
2
λ2 −

(
1
λ

)2

=
1
λ2

Book: β = 1
λ , but λ-notation is more standard . . .
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Application of the Exponential distribution

What is it good for?

Imagine X distributed according to Poisson Process, i.e., X ∼ P(µ),
i.e., we have on average µ of arrivals per time unit

Then the time between 2 arrivals, the so-called interarrival time is
exponentially distributed with parameter λ = µ (book: β = 1

µ
)

Example 5

Suppose on average 6 people call some service number per minute. What is
the probability that:

(a) in the next 3 minutes at least 25 people call?

(b) there is a gap of at least 30 seconds between 2 successive calls?

(a) X = ] calls in 3 minutes ⇒ X ∼ P(18) minutes (time unit: 3 minutes here)
P(X ≥ 25) = 1− P(X ≤ 25) = 1− 0.9317 = 0.0683
(b) Y : interarrival time between two calls⇒Y ∼ Exp(λ = 18) per 3 minutes

,

(Y ∼ Exp(λ = 3) per 1/2 minute)
P(Y ≥ 1/6) =

∫∞
1/6 18 · exp(−18 x)dx = e−3

(Similarly with λ = 3 : P(Y ≥ 1) = e−3)
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P(Y ≥ 1/6) =
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(Similarly with λ = 3 : P(Y ≥ 1) = e−3)
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Basics

An RV X has a normal distribution with
parameters µ and σ (X ∼ N (µ, σ)), if
the density is given by

f (x) =
1

σ
√

2π
exp

(
−1

2
(
x − µ
σ

)2
)

x ∈ R

Notice:

f is symmetric around x = µ

f is maximal for x = µ

One can prove that E(X ) = µ, V (X ) = σ2

Theorem: X ∼ N (µ, σ) and Z = X−µ
σ
, then Z ∼ N (0, 1)

Proof:

Let z̃ = x̃−µ
σ

Then P(X ≤ x̃) = P( X−µ
σ
≤ x̃−µ

σ
) = P(Z ≤ z̃)

P(Z ≤ z̃) = P(X ≤ x̃) = F (x̃) = 1
σ
√

2π

∫ x̃
−∞ exp(− 1

2

( x−µ
σ

)2
) dx

z= x−µ
σ
, dz= 1

σ
dx

= 1
2π

∫ z̃
−∞ exp(− 1

2 z2)dz
f (z̃) = 1√

2π
exp(− 1

2 z̃2), thus Z ∼ N (0, 1) �



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Basics

An RV X has a normal distribution with
parameters µ and σ (X ∼ N (µ, σ)), if
the density is given by

f (x) =
1

σ
√

2π
exp

(
−1

2
(
x − µ
σ

)2
)

x ∈ R

Notice:

f is symmetric around x = µ

f is maximal for x = µ

One can prove that E(X ) = µ, V (X ) = σ2

Theorem: X ∼ N (µ, σ) and Z = X−µ
σ
, then Z ∼ N (0, 1)

Proof:

Let z̃ = x̃−µ
σ

Then P(X ≤ x̃) = P( X−µ
σ
≤ x̃−µ

σ
) = P(Z ≤ z̃)

P(Z ≤ z̃) = P(X ≤ x̃) = F (x̃) = 1
σ
√

2π

∫ x̃
−∞ exp(− 1

2

( x−µ
σ

)2
) dx

z= x−µ
σ
, dz= 1

σ
dx

= 1
2π

∫ z̃
−∞ exp(− 1

2 z2)dz
f (z̃) = 1√

2π
exp(− 1

2 z̃2), thus Z ∼ N (0, 1) �



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Basics

An RV X has a normal distribution with
parameters µ and σ (X ∼ N (µ, σ)), if
the density is given by

f (x) =
1

σ
√

2π
exp

(
−1

2
(
x − µ
σ

)2
)

x ∈ R

Notice:

f is symmetric around x = µ

f is maximal for x = µ

One can prove that E(X ) = µ, V (X ) = σ2

Theorem: X ∼ N (µ, σ) and Z = X−µ
σ
, then Z ∼ N (0, 1)

Proof:

Let z̃ = x̃−µ
σ

Then P(X ≤ x̃) = P( X−µ
σ
≤ x̃−µ

σ
) = P(Z ≤ z̃)

P(Z ≤ z̃) = P(X ≤ x̃) = F (x̃) = 1
σ
√

2π

∫ x̃
−∞ exp(− 1

2

( x−µ
σ

)2
) dx

z= x−µ
σ
, dz= 1

σ
dx

= 1
2π

∫ z̃
−∞ exp(− 1

2 z2)dz
f (z̃) = 1√

2π
exp(− 1

2 z̃2), thus Z ∼ N (0, 1) �



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Basics

An RV X has a normal distribution with
parameters µ and σ (X ∼ N (µ, σ)), if
the density is given by

f (x) =
1

σ
√

2π
exp

(
−1

2
(
x − µ
σ

)2
)

x ∈ R

Notice:

f is symmetric around x = µ

f is maximal for x = µ

One can prove that E(X ) = µ, V (X ) = σ2

Theorem: X ∼ N (µ, σ) and Z = X−µ
σ
, then Z ∼ N (0, 1)

Proof:

Let z̃ = x̃−µ
σ

Then P(X ≤ x̃) = P( X−µ
σ
≤ x̃−µ

σ
) = P(Z ≤ z̃)

P(Z ≤ z̃) = P(X ≤ x̃) = F (x̃) = 1
σ
√

2π

∫ x̃
−∞ exp(− 1

2

( x−µ
σ

)2
) dx

z= x−µ
σ
, dz= 1

σ
dx

= 1
2π

∫ z̃
−∞ exp(− 1

2 z2)dz
f (z̃) = 1√

2π
exp(− 1

2 z̃2), thus Z ∼ N (0, 1) �



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Basics

An RV X has a normal distribution with
parameters µ and σ (X ∼ N (µ, σ)), if
the density is given by

f (x) =
1

σ
√

2π
exp

(
−1

2
(
x − µ
σ

)2
)

x ∈ R

Notice:

f is symmetric around x = µ

f is maximal for x = µ

One can prove that E(X ) = µ, V (X ) = σ2

Theorem: X ∼ N (µ, σ) and Z = X−µ
σ
, then Z ∼ N (0, 1)

Proof:

Let z̃ = x̃−µ
σ

Then P(X ≤ x̃) = P( X−µ
σ
≤ x̃−µ

σ
) = P(Z ≤ z̃)

P(Z ≤ z̃) = P(X ≤ x̃) = F (x̃) = 1
σ
√

2π

∫ x̃
−∞ exp(− 1

2

( x−µ
σ

)2
) dx

z= x−µ
σ
, dz= 1

σ
dx

= 1
2π

∫ z̃
−∞ exp(− 1

2 z2)dz
f (z̃) = 1√

2π
exp(− 1

2 z̃2), thus Z ∼ N (0, 1) �



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Basics

An RV X has a normal distribution with
parameters µ and σ (X ∼ N (µ, σ)), if
the density is given by

f (x) =
1

σ
√

2π
exp

(
−1

2
(
x − µ
σ

)2
)

x ∈ R

Notice:

f is symmetric around x = µ

f is maximal for x = µ

One can prove that E(X ) = µ, V (X ) = σ2

Theorem: X ∼ N (µ, σ) and Z = X−µ
σ
, then Z ∼ N (0, 1)

Proof:

Let z̃ = x̃−µ
σ

Then P(X ≤ x̃) = P( X−µ
σ
≤ x̃−µ

σ
) = P(Z ≤ z̃)

P(Z ≤ z̃) = P(X ≤ x̃) = F (x̃) = 1
σ
√

2π

∫ x̃
−∞ exp(− 1

2

( x−µ
σ

)2
) dx

z= x−µ
σ
, dz= 1

σ
dx

= 1
2π

∫ z̃
−∞ exp(− 1

2 z2)dz
f (z̃) = 1√

2π
exp(− 1

2 z̃2), thus Z ∼ N (0, 1) �



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Basics

An RV X has a normal distribution with
parameters µ and σ (X ∼ N (µ, σ)), if
the density is given by

f (x) =
1

σ
√

2π
exp

(
−1

2
(
x − µ
σ

)2
)

x ∈ R

Notice:

f is symmetric around x = µ

f is maximal for x = µ

One can prove that E(X ) = µ, V (X ) = σ2

Theorem: X ∼ N (µ, σ) and Z = X−µ
σ
, then Z ∼ N (0, 1)

Proof:

Let z̃ = x̃−µ
σ

Then P(X ≤ x̃) = P( X−µ
σ
≤ x̃−µ

σ
) = P(Z ≤ z̃)

P(Z ≤ z̃) = P(X ≤ x̃) = F (x̃) = 1
σ
√

2π

∫ x̃
−∞ exp(− 1

2

( x−µ
σ

)2
) dx

z= x−µ
σ
, dz= 1

σ
dx

= 1
2π

∫ z̃
−∞ exp(− 1

2 z2)dz
f (z̃) = 1√

2π
exp(− 1

2 z̃2), thus Z ∼ N (0, 1) �



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Basics

An RV X has a normal distribution with
parameters µ and σ (X ∼ N (µ, σ)), if
the density is given by

f (x) =
1

σ
√

2π
exp

(
−1

2
(
x − µ
σ

)2
)

x ∈ R

Notice:

f is symmetric around x = µ

f is maximal for x = µ

One can prove that E(X ) = µ, V (X ) = σ2

Theorem: X ∼ N (µ, σ) and Z = X−µ
σ
, then Z ∼ N (0, 1)

Proof:

Let z̃ = x̃−µ
σ

Then P(X ≤ x̃) = P( X−µ
σ
≤ x̃−µ

σ
) = P(Z ≤ z̃)

P(Z ≤ z̃) = P(X ≤ x̃) = F (x̃) = 1
σ
√

2π

∫ x̃
−∞ exp(− 1

2

( x−µ
σ

)2
) dx

z= x−µ
σ
, dz= 1

σ
dx

= 1
2π

∫ z̃
−∞ exp(− 1

2 z2)dz
f (z̃) = 1√

2π
exp(− 1

2 z̃2), thus Z ∼ N (0, 1) �



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Basics

An RV X has a normal distribution with
parameters µ and σ (X ∼ N (µ, σ)), if
the density is given by

f (x) =
1

σ
√

2π
exp

(
−1

2
(
x − µ
σ

)2
)

x ∈ R

Notice:

f is symmetric around x = µ

f is maximal for x = µ

One can prove that E(X ) = µ, V (X ) = σ2

Theorem: X ∼ N (µ, σ) and Z = X−µ
σ
, then Z ∼ N (0, 1)

Proof: Let z̃ = x̃−µ
σ

Then P(X ≤ x̃) = P( X−µ
σ
≤ x̃−µ

σ
) = P(Z ≤ z̃)

P(Z ≤ z̃) = P(X ≤ x̃) = F (x̃) = 1
σ
√

2π

∫ x̃
−∞ exp(− 1

2

( x−µ
σ

)2
) dx

z= x−µ
σ
, dz= 1

σ
dx

= 1
2π

∫ z̃
−∞ exp(− 1

2 z2)dz
f (z̃) = 1√

2π
exp(− 1

2 z̃2), thus Z ∼ N (0, 1) �



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Basics

An RV X has a normal distribution with
parameters µ and σ (X ∼ N (µ, σ)), if
the density is given by

f (x) =
1

σ
√

2π
exp

(
−1

2
(
x − µ
σ

)2
)

x ∈ R

Notice:

f is symmetric around x = µ

f is maximal for x = µ

One can prove that E(X ) = µ, V (X ) = σ2

Theorem: X ∼ N (µ, σ) and Z = X−µ
σ
, then Z ∼ N (0, 1)

Proof: Let z̃ = x̃−µ
σ

Then P(X ≤ x̃) = P( X−µ
σ
≤ x̃−µ

σ
) = P(Z ≤ z̃)

P(Z ≤ z̃) = P(X ≤ x̃) = F (x̃) = 1
σ
√

2π

∫ x̃
−∞ exp(− 1

2

( x−µ
σ

)2
) dx

z= x−µ
σ
, dz= 1

σ
dx

= 1
2π

∫ z̃
−∞ exp(− 1

2 z2)dz

f (z̃) = 1√
2π

exp(− 1
2 z̃2), thus Z ∼ N (0, 1) �



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Basics

An RV X has a normal distribution with
parameters µ and σ (X ∼ N (µ, σ)), if
the density is given by

f (x) =
1

σ
√

2π
exp

(
−1

2
(
x − µ
σ

)2
)

x ∈ R

Notice:

f is symmetric around x = µ

f is maximal for x = µ

One can prove that E(X ) = µ, V (X ) = σ2

Theorem: X ∼ N (µ, σ) and Z = X−µ
σ
, then Z ∼ N (0, 1)

Proof: Let z̃ = x̃−µ
σ

Then P(X ≤ x̃) = P( X−µ
σ
≤ x̃−µ

σ
) = P(Z ≤ z̃)

P(Z ≤ z̃) = P(X ≤ x̃) = F (x̃) = 1
σ
√

2π

∫ x̃
−∞ exp(− 1

2

( x−µ
σ

)2
) dx

z= x−µ
σ
, dz= 1

σ
dx

= 1
2π

∫ z̃
−∞ exp(− 1

2 z2)dz
f (z̃) = 1√

2π
exp(− 1

2 z̃2), thus Z ∼ N (0, 1) �



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Basics

If X ∼ N (µ, σ), then

f (x) = 1
σ
√

2π
exp

(
− 1

2 ( x−µ
σ

)2)
E(X ) = µ, V (X ) = σ2

X ∼ N (µ, σ) and Z = X−µ
σ
, then

Z ∼ N (0, 1)

Table A3: P(Z ≤ z) (Z ∼ N (0, 1))

If X1 ∼ N (µ1, σ1) and X2 ∼ N (µ2, σ2) and X1 and X2 are independent,

then: X1 + X2 ∼ N (µ1 + µ2,
√
σ2

1 + σ2
2), V (X1 + X2) = V (X1) + V (X2)

If Xi ∼ N (µ, σ), i = 1, . . . , n , X1, . . . , Xn IID. Then∑n
i=1 Xi ∼ N (n · µ,

√
n · σ)

X̄ = 1
n

∑n
i=1 Xi ∼ N (µ, σ/

√
n), E(X̄ ) = µ



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Basics

If X ∼ N (µ, σ), then

f (x) = 1
σ
√

2π
exp

(
− 1

2 ( x−µ
σ

)2)
E(X ) = µ, V (X ) = σ2

X ∼ N (µ, σ) and Z = X−µ
σ
, then

Z ∼ N (0, 1)

Table A3: P(Z ≤ z) (Z ∼ N (0, 1))

If X1 ∼ N (µ1, σ1) and X2 ∼ N (µ2, σ2) and X1 and X2 are independent,

then: X1 + X2 ∼ N (µ1 + µ2,
√
σ2

1 + σ2
2), V (X1 + X2) = V (X1) + V (X2)

If Xi ∼ N (µ, σ), i = 1, . . . , n , X1, . . . , Xn IID. Then∑n
i=1 Xi ∼ N (n · µ,

√
n · σ)

X̄ = 1
n

∑n
i=1 Xi ∼ N (µ, σ/

√
n), E(X̄ ) = µ



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Basics

If X ∼ N (µ, σ), then

f (x) = 1
σ
√

2π
exp

(
− 1

2 ( x−µ
σ

)2)
E(X ) = µ, V (X ) = σ2

X ∼ N (µ, σ) and Z = X−µ
σ
, then

Z ∼ N (0, 1)

Table A3: P(Z ≤ z) (Z ∼ N (0, 1))

If X1 ∼ N (µ1, σ1) and X2 ∼ N (µ2, σ2) and X1 and X2 are independent,

then: X1 + X2 ∼ N (µ1 + µ2,
√
σ2

1 + σ2
2), V (X1 + X2) = V (X1) + V (X2)

If Xi ∼ N (µ, σ), i = 1, . . . , n , X1, . . . , Xn IID. Then∑n
i=1 Xi ∼ N (n · µ,

√
n · σ)

X̄ = 1
n

∑n
i=1 Xi ∼ N (µ, σ/

√
n), E(X̄ ) = µ



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Basics

If X ∼ N (µ, σ), then

f (x) = 1
σ
√

2π
exp

(
− 1

2 ( x−µ
σ

)2)
E(X ) = µ, V (X ) = σ2

X ∼ N (µ, σ) and Z = X−µ
σ
, then

Z ∼ N (0, 1)

Table A3: P(Z ≤ z) (Z ∼ N (0, 1))

If X1 ∼ N (µ1, σ1) and X2 ∼ N (µ2, σ2) and X1 and X2 are independent,

then: X1 + X2 ∼ N (µ1 + µ2,
√
σ2

1 + σ2
2), V (X1 + X2) = V (X1) + V (X2)

If Xi ∼ N (µ, σ), i = 1, . . . , n , X1, . . . , Xn IID. Then∑n
i=1 Xi ∼ N (n · µ,

√
n · σ)

X̄ = 1
n

∑n
i=1 Xi ∼ N (µ, σ/

√
n), E(X̄ ) = µ



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Basics

If X ∼ N (µ, σ), then

f (x) = 1
σ
√

2π
exp

(
− 1

2 ( x−µ
σ

)2)
E(X ) = µ, V (X ) = σ2

X ∼ N (µ, σ) and Z = X−µ
σ
, then

Z ∼ N (0, 1)

Table A3: P(Z ≤ z) (Z ∼ N (0, 1))

If X1 ∼ N (µ1, σ1) and X2 ∼ N (µ2, σ2) and X1 and X2 are independent,

then: X1 + X2 ∼ N (µ1 + µ2,
√
σ2

1 + σ2
2), V (X1 + X2) = V (X1) + V (X2)

If Xi ∼ N (µ, σ), i = 1, . . . , n , X1, . . . , Xn IID. Then∑n
i=1 Xi ∼ N (n · µ,

√
n · σ)

X̄ = 1
n

∑n
i=1 Xi ∼ N (µ, σ/

√
n), E(X̄ ) = µ



beamer-tu-logo

Flavor of estimation problems . . . Exponential Distribution Normal Distribution Exercises Monday

Examples

Example 6(a)

The net weight of a pack of coffee (500 grams) is a normally distributed RV
with parameters µ = 505 g and σ = 5 g. What is the probability that the net
weight of a pack is at least 500 g?

P(X ≥ 500) = P(Z ≥ 500− µ
σ

=
500− 505

5
= −1)

= 1− P(Z ≤ −1)
TableA3

= 1− 0.1587 = 0.8413
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And now . . .

1 Flavor of estimation problems . . .

2 Exponential Distribution
Formulation
Expectation etc.
Application of the Exponential distribution

3 Normal Distribution
Basics
Examples

4 Exercises

5 Monday
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Computing together:
book (pp. 164-165): 5.51, 5.59, 5.65
book (pp. 186-187): 6.5, 6.7, 6.13
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Finishing up continuous PD’s, introducing
Erlang distribution
Gamma-distribution
Chi-squared distribution

Central limit theorem
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