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e Exponential Distribution
@ Formulation
@ Expectation etc.
@ Application of the Exponential distribution

© Normal Distribution
@ Basics
@ Examples

© Exercises

e Monday
book: Sections 6.2-6.4,6.6
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Example 3: Estimation in a uniform distribution U(0, L)
Let X ~ U(0, L), with L unknown

We want to estimate L
For that purpose we draw 100 x independently from U(0, L)
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Then Xi, Xz, ..., Xi00 are independent and indentically distributed (1I1D)
according to U(0, L)

We call X, Xz, . . ., X100 @ random sample
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Example 3: Estimation in a uniform distribution U(0, L)

Let X ~ U(0, L), with L unknown

@ We want to estimate L

@ For that purpose we draw 100 x independently from U(O, L)

@ Let X; be the RV corresponding to the i drawing

@ Then Xi, Xz, ..., Xioo are independent and indentically distributed (11D)
according to U(0, L)

@ Wecall Xi, Xa, ..., Xio0 @ random sample

@ After 100 drawings we have 100 realizations, denoted by
X1, Xo, ..., X100
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Example 3: Estimation in a uniform distribution U(0, L)

(cont.)
@ Define Z = max{Xi, ..., Xioo}
@ Then F(z2) =P(Z<z)=[[INP(Xi < z)= (%)100, 0<z<l
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(cont.)
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Example 3: Estimation in a uniform distribution U(0, L)

(cont.)
@ Define Z = max{Xi, ..., Xioo}
@ Then F(2) = P(Z<2z)=T[NP(Xi<z)=(3)'"0<z<L
@ Hence f(z) = F'(z) =100 - (2)* . 1

@ Then E(Z) = [y z-100- (£)*-1dz=100 [ (3)'” dz
101 L
[100 701 (L) 'L]z D %L

@ As an estimate for L we now define the RV B = - Z. We have
EB)=L
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Example 3: Estimation in a uniform distribution U(0, L)

(cont.)
@ Define Z = max{Xi, ..., Xioo}
Then F(z) = P(Z<2) =11 P(Xi<z)= ()", 0<z<L
Hence f(z) = F'(z) = 100 - (2)% - 1
Then E(Z) = [ z- 100 (£)®.1dz=100 [} (3)'” dz

Z
[100 701 (L)101 'LL 3 = %L

As an estimate for L we now define the RV B = - Z. We have
EB)=L

B is called an unbiased estimator for L
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@ Point estimate - solution is a single point
@ Interval estimate - solution is an interval

2 common point estimates

@ The sample mean- X =137 X
@ The sample variance - $2 = 1 577 (X; — X)?

V.

Observation 1

© E(X)=E (374 X) = 7 XLy E(X) = 7 300 px = 5N~ pox = pix

v
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Observation 2

Let Xi, ..., X, be IID with 1 = E(X;), 0% = V(X;). Then

- 1¢ 1 1 1
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i=1

1 1 1
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Observation 2

Let Xi, ..., X, be IID with 1 = E(X;), 0% = V(X;). Then

- 1¢ 1 1 1
V(X) = V<nZXi) = V(EX1+EX2+"'+EX")
i=1

1 1 1
= V) + V) + -+ — V(X0
1 1 15
=N V(X) = V(X) = o
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Observation 2

Let Xi, ..., X, be IID with 1 = E(X;), 0% = V(X;). Then

- 1¢ 1 1 1
V(X) = V<nZXi) = V(EX1+EX2+"'+EX")
i=1

1 1

:l.n.v(x,.):

n2

1

—~

V) = 10°

Sl =
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Observation 2

Let Xi, ..., X, be IID with 1 = E(X;), 0% = V(X;). Then

- 1¢ 1 1 1
V(X) = V<nZXi) = V(EX1+EX2+"'+EX")
i=1

1 1

:l.n.v(x,.):

n2

—~

1

1
V(X) = 70°

Sl =

Notice that V/(X) = E{(X— M)Z} +£8 E{(X/ — X)Z}

variance of sample mean sample variance
Moreover, Observation 2 is independent of the actual distribution of the X;
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Example 4

Let X have the following distribution: P(X =1) =p, P(X =0) =1 —pwithp
unknown (0 elsewhere). Estimate p

@ Notice that ux = E(X) = p, V(X) =p—p* = p(1 — p)
@ We draw Xi, ..., X, from this distribution. Then:
o E(X)= 1S L E(X)=1-n-E(X)=p
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Example 4

Let X have the following distribution: P(X =1) =p, P(X =0) =1 —pwithp
unknown (0 elsewhere). Estimate p
@ Notice that ux = E(X) = p, V(X) =p—p* = p(1 — p)
@ We draw Xi, ..., X, from this distribution. Then:
o E(X)=1",E(X) =1 n E(X)=p= X unbiased

estimator for yux = p
o V(X)= XL V(X)) = -n-p(1—p) =75 P(1-P)
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Example 4

Let X have the following distribution: P(X =1) =p, P(X =0) =1 —pwithp
unknown (0 elsewhere). Estimate p
@ Notice that ux = E(X) =p, V(X) =p—p° = p(1 — p)
@ We draw Xi, ..., X, from this distribution. Then:
o E(X)=1",E(X) =1 n E(X)=p= X unbiased

estimator for yux = p
o V(X) =X V(X)= - n-B(1-p) =7 P(1-P)
HW: What is the probability distribution of >"7 , X;?




Exponential Distribution

e Exponential Distribution
@ Formulation
@ Expectation etc.
@ Application of the Exponential distribution



Exponential Distribution
L]

Formulation




Exponential Distribution
L]
Formulation

What is exponential PDF?

A RV X is exponentially distributed with parameter A (book: parameter 1/ ),
X ~ Exp(}N), if




Exponential Distribution
L]
Formulation

What is exponential PDF?

A RV X is exponentially distributed with parameter A (book: parameter 1/ ),
X ~ Exp(}N), if

[ Xexp(=Ax), x>0,
fx) = { 0, elsewhere




Exponential Distribution
L]
Formulation

What is exponential PDF?

A RV X is exponentially distributed with parameter A (book: parameter 1/ ),
X ~ Exp(}N), if

[ Xexp(=Ax), x>0,
fx) = { 0, elsewhere




Exponential Distribution
[ ]
Expectation etc.

Computation of £(X), F(X) and V(X) for the Exponential

distribution

Book: 3 = 1, but A\-notation is more standard ...



Exponential Distribution
[ ]
Expectation etc.

Computation of £(X), F(X) and V(X) for the Exponential

distribution

Book: 3 = 1, but A\-notation is more standard ...



Exponential Distribution
[ ]
Expectation etc.

Computation of £(X), F(X) and V(X) for the Exponential

distribution

E(X) = /0 ~ X f(x) dx

Book: 3 = 1, but A\-notation is more standard ...



Exponential Distribution
[ ]
Expectation etc.

Computation of £(X), F(X) and V(X) for the Exponential

distribution

E(X) = /Oooxf(x)dx: /Ooox~)\ exp(—X\x)dx

Book: 3 = 1, but A\-notation is more standard ...



Exponential Distribution
[ ]
Expectation etc.

Computation of £(X), F(X) and V(X) for the Exponential

distribution

E(X) = /Oooxf(x)dx: /Ooox~)\ exp(—X\x)dx

2 [—x - exp(~A X)]Z, +/ exp(—A x)dx
0

Book: 3 = 1, but A\-notation is more standard ...



Exponential Distribution
[ ]
Expectation etc.

Computation of £(X), F(X) and V(X) for the Exponential

distribution

E(X) = /Oooxf(x)dx: /Ooox~)\ exp(—X\x)dx

z [—x - exp(=A x)];Z, +/ exp(—\ x)dx
0

=-0+0+ [—% -exp(—Ax)]

x=0

Book: 3 = 1, but A\-notation is more standard ...



Exponential Distribution
[ ]
Expectation etc.

Computation of £(X), F(X) and V(X) for the Exponential

distribution
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distribution

E(X) = /Oooxf(x)dx: /Ooox~)\ exp(—X\x)dx
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Expectation etc.

Computation of £(X), F(X) and V(X) for the Exponential

distribution

E(X) = /Oooxf(x)dx: /Ooox~)\ exp(—X\x)dx

2 [—x - exp(~A X)]Z, +/ exp(—A x)dx
0

1 o 1
=-0+0+ [_X -exp(—Ax)] - =5
F(x)=1—exp(—Ax) forx > 0and 0elsewhere
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Exponential Distribution
[ ]
Expectation etc.

Computation of £(X), F(X) and V(X) for the Exponential

distribution

E(X) = /Oooxf(x)dx: /Ooox~)\ exp(—X\x)dx

2 [—x - exp(~A X)]Z, +/ exp(—A x)dx
0

1 o 1
=-0+0+ [_X -exp(—Ax)] - =5
F(x)=1—exp(—Ax) forx > 0and 0elsewhere
2
E(X) = 3

=2-(3) - %

Book: 3 = 1, but A\-notation is more standard ...
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Application of the Exponential distribution

What is it good for?

@ Imagine X distributed according to Poisson Process, i.e., X ~ P(u),
i.e., we have on average . of arrivals per time unit

@ Then the time between 2 arrivals, the so-called interarrival time is
exponentially distributed with parameter A = u (book: g = %)

Suppose on average 6 people call some service number per minute. What is
the probability that:
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(b) there is a gap of at least 30 seconds between 2 successive calls?

(a) X = g calls in 3 minutes = X ~ P(18) minutes (time unit: 3 minutes here)
P(X > 25) =
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Application of the Exponential distribution

What is it good for?

@ Imagine X distributed according to Poisson Process, i.e., X ~ P(u),
i.e., we have on average . of arrivals per time unit

@ Then the time between 2 arrivals, the so-called interarrival time is
exponentially distributed with parameter A = u (book: g = %)

Suppose on average 6 people call some service number per minute. What is
the probability that:

(a) in the next 3 minutes at least 25 people call?

(b) there is a gap of at least 30 seconds between 2 successive calls?

(a) X = g calls in 3 minutes = X ~ P(18) minutes (time unit: 3 minutes here)
P(X >25)=1— P(X < 25)
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Application of the Exponential distribution

What is it good for?

@ Imagine X distributed according to Poisson Process, i.e., X ~ P(u),
i.e., we have on average . of arrivals per time unit

@ Then the time between 2 arrivals, the so-called interarrival time is
exponentially distributed with parameter A = u (book: g = %)

Suppose on average 6 people call some service number per minute. What is
the probability that:

(a) in the next 3 minutes at least 25 people call?

(b) there is a gap of at least 30 seconds between 2 successive calls?

(a) X = g calls in 3 minutes = X ~ P(18) minutes (time unit: 3 minutes here)
P(X >25)=1—P(X <25)=1-0.9317
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Application of the Exponential distribution

What is it good for?

@ Imagine X distributed according to Poisson Process, i.e., X ~ P(u),
i.e., we have on average . of arrivals per time unit

@ Then the time between 2 arrivals, the so-called interarrival time is
exponentially distributed with parameter A = u (book: g = %)

Suppose on average 6 people call some service number per minute. What is
the probability that:

(a) in the next 3 minutes at least 25 people call?

(b) there is a gap of at least 30 seconds between 2 successive calls?

(a) X = g calls in 3 minutes = X ~ P(18) minutes (time unit: 3 minutes here)
P(X>25)=1—-P(X <25)=1-0.9317 = 0.0683
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What is it good for?

@ Imagine X distributed according to Poisson Process, i.e., X ~ P(u),
i.e., we have on average . of arrivals per time unit
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exponentially distributed with parameter A = u (book: g = %)
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(b) Y : interarrival time between two calls =
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Application of the Exponential distribution

What is it good for?

@ Imagine X distributed according to Poisson Process, i.e., X ~ P(u),
i.e., we have on average . of arrivals per time unit

@ Then the time between 2 arrivals, the so-called interarrival time is
exponentially distributed with parameter A = u (book: g = %)

Suppose on average 6 people call some service number per minute. What is
the probability that:

(a) in the next 3 minutes at least 25 people call?
(b) there is a gap of at least 30 seconds between 2 successive calls?

(a) X = g calls in 3 minutes = X ~ P(18) minutes (time unit: 3 minutes here)
P(X>25)=1—-P(X <25)=1-0.9317 = 0.0683
(b) Y : interarrival time between two calls =Y ~ Exp(A = 18) per 3 minutes,
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Application of the Exponential distribution

What is it good for?

@ Imagine X distributed according to Poisson Process, i.e., X ~ P(u),
i.e., we have on average . of arrivals per time unit

@ Then the time between 2 arrivals, the so-called interarrival time is
exponentially distributed with parameter A = u (book: g = %)

Suppose on average 6 people call some service number per minute. What is
the probability that:

(a) in the next 3 minutes at least 25 people call?

(b) there is a gap of at least 30 seconds between 2 successive calls?
(a) X = g calls in 3 minutes = X ~ P(18) minutes (time unit: 3 minutes here)
P(X>25)=1—-P(X <25)=1-0.9317 = 0.0683
(b) Y : interarrival time between two calls =Y ~ Exp(A = 18) per 3 minutes,
(Y ~ Exp(X = 3) per 1/2 minute)
P(Y >1/6) = [ 18- exp(—~18x)dx = e’
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Application of the Exponential distribution

What is it good for?

@ Imagine X distributed according to Poisson Process, i.e., X ~ P(u),
i.e., we have on average . of arrivals per time unit

@ Then the time between 2 arrivals, the so-called interarrival time is
exponentially distributed with parameter A = u (book: g = %)

Suppose on average 6 people call some service number per minute. What is
the probability that:

(a) in the next 3 minutes at least 25 people call?
(b) there is a gap of at least 30 seconds between 2 successive calls?

(a) X = g calls in 3 minutes = X ~ P(18) minutes (time unit: 3 minutes here)
P(X>25)=1—-P(X <25)=1-0.9317 = 0.0683

(b) Y : interarrival time between two calls =Y ~ Exp(A = 18) per 3 minutes,
(Y ~ Exp(X = 3) per 1/2 minute)

P(Y >1/6) = [ 18- exp(—~18x)dx = e’

(Similarly with A =3 : P(Y > 1) = e73)
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An RV X has a normal distribution with
parameters p and o (X ~ N (u, o)), if
the density is given by

1

Notice:

@ fis symmetric around x = p

@ fis maximal for x = p

@ One can prove that £(X) = pu, V(X) = ¢°
Theorem: X ~ N(u,0) and Z = ¥4 then Z ~ N(0,1)

o

Proof: Let 2 = *%* Then P(X < X) = P(*>4 < 1) =

P(Z <

z
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Basics

An RV X has a normal distribution with
parameters p and o (X ~ N (u, o)), if
the density is given by

1

Notice:
@ fis symmetric around x = p
@ fis maximal for x = p
@ One can prove that £(X) = pu, V(X) = ¢°
Theorem: X ~ N(u,0) and Z = X (0,1)
Proof: Let 2 = *% Then P(X < %) = P(*>£ < H) =P(Z<32)
P(Z<Z)=P(X<X)=F(X) = Ur f_ exp(—3 (X;“)z)dx

_X—p 1 -
z=" ,dzfgdx 9 >

= o= J° . exp(—3 2°)dz
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Basics

An RV X has a normal distribution with
parameters p and o (X ~ N (u, o)), if
the density is given by

1

Notice:
@ fis symmetric around x = p
@ fis maximal for x = p
@ One can prove that £(X) = pu, V(X) = ¢°
Theorem: X ~ N(u,0) and Z = X (0,1)
Proof: Let 2 = *% Then P(X < %) = P(*>£ < H) =P(Z<32)
P(Z<Z)=P(X<X)=F(X) = Ur f_ exp(—3 (X;“)z)dx

_X—p 1 -
z=" ,dzfgdx 9 >

= o= J° . exp(—3 2°)dz

2w
f(2) = 1 exp(— 122, thus Z ~ N/(0,1) O

ver
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If X ~ N(p,0), then :
© 1) =7z e (=234,
@ E(X)=pu, V(X)=0? "
@ X ~N(u,o)and Z ==L then =

Z~N(0,1) ”
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If X ~ N(p,0), then :
© 1) =7z e (=234,
@ E(X)=pu, V(X)=0? "
@ X ~N(u,o)and Z ==L then =
Z~N(0,1) e o e i e e e

@ Table A3: P(Z < 2) (Z ~ N(0,1))
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If X ~ N(p,0), then :
© 1) =7z e (=234,
@ E(X)=pu, V(X)=0? "
@ X ~N(u,o)and Z ==L then =

Z~N(0,1) ”

@ Table A3: P(Z < z) (Z ~ N(0,1))
@ If X1 ~ N(u1,01) and Xo ~ N (u2,02) and X; and X; are independent,
then: Xy + Xo ~ N(p1 + p2, /02 + 02), V(X1 + Xo) = V(X1) + V(X2)
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If X ~ N(p,0), then :
© 1) =7z e (=234,
@ E(X)=pu, V(X)=0? "
@ X ~N(u,o)and Z ==L then =

Z~N(0,1) ”

@ Table A3: P(Z < z) (Z ~ N(0,1))

@ If Xi ~ N(u1,01) and Xo ~ N (uz,02) and X; and X; are independent,
then: Xy + Xo ~ N(p1 + p2, /02 + 02), V(X1 + Xo) = V(X1) + V(X2)

@ If X ~N(,0),i=1,...,n,Xq,..., X, lID. Then

°Z/ 1 Xi ~ N(n- u,f o)
= 5 2y Xi ~ N(n,0/v/n), E(X)

I
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Example 6(a)

The net weight of a pack of coffee (500 grams) is a normally distributed RV
with parameters © = 505 g and o = 5 g. What is the probability that the net
weight of a pack is at least 500 g?
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Examples

Example 6(a)

The net weight of a pack of coffee (500 grams) is a normally distributed RV
with parameters © = 505 g and o = 5 g. What is the probability that the net
weight of a pack is at least 500 g?

. 500 — 500 —505
- o - 5 a

,1)

P(X > 500) = P(Z
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Examples

Example 6(a)

The net weight of a pack of coffee (500 grams) is a normally distributed RV
with parameters © = 505 g and o = 5 g. What is the probability that the net
weight of a pack is at least 500 g?

P(X > 500) = P(Z > 5000‘ £ _ 500 - 505 _ 4

=1-P(Z<-1)"2%1 _0.1587 = 0.8413
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© Exercises



Computing together:
@ book (pp. 164-165): 5.51, 5.59, 5.65
@ book (pp. 186-187): 6.5, 6.7, 6.13



Monday

e Monday



@ Finishing up continuous PD’s, introducing

e Erlang distribution
o Gamma-distribution
@ Chi-squared distribution

@ Central limit theorem
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