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X1, X2, . . . , Xn, IID N (µ, σ) (we sometimes talk about realization (“points”)
x1,. . . , xn of X1,. . . , Xn; it will be clear from context which of the two notions
we mean)
Sample mean:

Sample mean has realization x = 1
n

∑n
i=1 xi

E(X ) = µ (unbiased)

V (X ) = σ2

n (σX = σ√
n )

⇒ X ∼ N (µ, σ√
n )

Sample variance:
Sample variance S2 = 1

n−1

∑n
i=1(Xi − X )2 (realization

s2 = 1
n−1

∑m
i=1(xi − x̄)2)

E(S2) = σ2 (unbiased)
Last week – estimation of σ2 or σ

µ known: χ2 def
=
∑n

i=1
(Xi−µ)

σ2 ∼ χ2
n (chi-squared distribution with n

degrees of freedom)⇒ calculate confidence interval (CI) for σ2

µ unknown: χ2 def
=
∑n

i=1
(Xi−X)

σ2 = (n−1)S2

σ2 ∼ χ2
n−1 (chi-squared

distribution with n degrees of freedom)⇒ calculate confidence interval
(CI) for σ2 and σ2 (book: Section 9.12)
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Central limit theorem (CLT)

Let X1, . . . ,Xn be IID with unknown µ and σ.

Then E(X ) = µ, V (X ) = σ2

n , and, if n is big enough,

Z def
=

X − µ
σ/
√

n
≈N (0, 1)

Remarks

Use T-distribution if you have enough information: i.e. normal
distribution and a not too large sample

χ2 def
= (n−1) s2

σ2 ∼ χ2
n−1 ⇒ V (χ2) = 2(n − 1)

⇒ V ( s2

σ2 ) = 1
(n−1)2 · V (χ2) = 2

n−1
n→∞→ 0, whereas E( s2

σ2 ) = n−1
n−1 = 1⇒

That is why we may replace σ by S.
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Basics

Null hypothesis

Hypothesis: Some assertation/conjecture concerning the population that we
are drawing from. E.g.:

(a) µ = 20

(b) µ ≤ 20

(c) σ ≥ 5

H0 : The null hypothesis

Alternative hypothesis

(a) µ 6= 20

(b) µ > 20

(c) σ < 5

H1 : The alternative hypothesis

Accepting/rejecting H0

Depending on the realization of the random sample we accept or reject H0.
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Examples

Example 1 (a)

Let X1, X2, . . . , X100 IID from exponential distribution (Exp(λ), Exp(β)). We
want to test H0 : λ = 1 vs. H1 : λ 6= 1

Note: Under H0 (if H0 is true): µX = E(Xi ) = 1
λ

= β = 1,
σ2

X = V (Xi ) = 1
λ2 = 1.

We decide to accept H0 if
∑n

i=1 Xi ∈ [95, 100] - this is acceptance region
(notice that E(

∑n
i=1 Xi ) = 100 under H0 )

Task: Calculate the significance level α (probability of rejecting H0 when
it is true)

Solution: Z def
= X̄−µ

σ/
√

n ≈ N (0, 1) (CLT)

Furthermore:
∑n

i=1 Xi ∈ [95, 105]⇔ X̄ = 1
n

∑n
i=1 Xi ∈ [0.95, 1.05]

Under H0 : µ = 1, σ = 1⇒ Z def
= X̄−1

1/
√

100
≈ N (0, 1) and:

α = P(
n∑

i=1

Xi < 95) + P(
n∑

i=1

Xi > 105) = P(X < 0.95) + P(X > 1.05)

= P(Z =
X − 1

1/
√

100
<

0.95− 1
1/
√

100
) + P(Z >

1.05− 1
1/
√

100
) = 0.6170
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Example 1 (b)

Let X1, X2, . . . , X100 IID from exponential distribution (Exp(λ). We want to test
H0 : λ = 1 vs. H1 : λ 6= 1 With significance level of 0.1, for what outcomes of
X̄ do we accept H0?

Under H0 (meaning: if H0 is true):
µX = E(Xi ) = 1

λ
= β = 1 σ2

X = V (Xi ) = 1
λ2 = 1,

Z = X−1
1/
√

100
∼ N (0, 1)

Find z such that P(−z ≤ Z ≤ z) = 1− 0.10 = 0.90
Table A3⇒ P

(
−1.645 ≤ X−1

1/
√

100
≤ 1.645

)
= 0.90

⇔ P
(
−1.645 ≤ X̄−1

1/
√

100
≤ 1.645

)
= 0.90

⇔ P
(
X̄ ∈ [0.83555, 1.1645]

)
= 0.90

Acceptance region for H0 : λ = 1 is [0.83555, 1.1645]
Critical region for H0 : All other outcomes for X
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Example 1 (c)

Let X1, X2, . . . , X100 IID from exponential distribution (Exp(λ), Exp(β)).
Calculate β if in fact λ = 0.85
In order to be able to calculate β we need a concrete value for the alternative
hypothesis. Just λ 6= 1 is not enough

We accept H0 if x̄ ∈ [0.95, 1.05]

Under H1 : λ = 0.85 we have (because the distribution is exponential)

µ = E(Xi ) = 1
λ

= 1
0.85 , σ

2 = V (Xi ) = 1
λ2 = 1

0.852

Z = X−µ
σ/
√

n = X−1/0.85
1/0.85√

100

approx
∼ N (0, 1) (CLT)

β = P
(
95 ≤

∑n
i=1 Xi ≤ 105

)
= P(0.95 ≤ X̄ ≤ 1.05)

= P
(

0.95−1/0.85
1

0.85
√

100
≤ Z ≤ 1.05−1/0.85

1
0.85
√

100

)
= P (−1.925 ≤ Z ≤ −1.075)

= 0.1412− 0.0271= 0.1141
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Example 1 (d)

Let X1, X2, . . . , X100 IID from exponential distribution (Exp(λ), Exp(β)). We
found X = 1.15. For what levels of significance do we accept H0 : λ = 1?
We calculate a significance level such that X = 1.15 would just be accepted
or just be rejected. This significance level is called the P-value
H0 = 1 vs. H1 : λ 6= 1

f (x̄) under H0

P-value def
= P(X ≤ 0.85 or X ≥ 1.15) = 2 P(X ≤ 0.85) = 2 P(Z ≤ 0.85−1

1/
√

100
)

2 · P(Z ≤ −1.5) = 2 · 0.0668 = 0.1336
So, there is a probability of 0.1336 that X̄ differs at least 0.15 from µ.
What is the conclusion from this observation regarding H0?

P-value: The highest α such that H0 is accepted and the lowest α such that
H0 is rejected.
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Two-sided tests vs. one-sided tests

One-sided vs. two-sided tests

So far: H0 : µ = x vs. H1 : µ 6= x (so-called two-sided tests)
Now: H0 : µ = x vs. H1 : µ > x or H1 : µ < x (so-called one-sided tests)
Same as H0 : µ ≥ x vs. H1 : µ < x , or H0 : µ ≤ x vs. H1 : µ > x
We use one-sided tests for calculation purposes: Given that µ = x we use
CLT and/or probability distributions

Ho : µ ≥ x

Acceptance region: X̄ ≥ y

Significance level: α = P(X ≤ y)

P-value also one-sided
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Two-sided tests vs. one-sided tests

Example 2 (a)

X1, . . . , X5 ∼ Exp(λ), IID, λ unknown
H0 : λ = 2 vs. H1 : λ > 2
So under H0 : µ = E(Xi ) = 1

2
Assume that we decide to accept H0 if X̄ > 0.45; calculate α

X̄ > 0.45⇔
∑5

i=1 Xi > 5 · 0.45 = 2.25
Let Y =

∑5
i=1 Xi (sum of independent exponentially distributed RV’s)

⇒ Y ∼ Erl(λ = 2, n = 5) (under H0), E(Y ) = 5/2

Apparently: α = P(Y ≤ 2.25)=
∫ 2.25

0
λn xn−1

(n−1)!
exp(−λ x) dx=∫ 2.25

0
25 x4

4!
exp(−2 x) dx= 4

3

∫ 2.25
0 x4 exp(−2 x) dx= . . . ≈ 0.4679
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Two-sided tests vs. one-sided tests

Example 2 (b)

We found
∑5

i=1 xi = 3. For what levels of significance we accept H0 : λ ≤ 2?

E(y) = 2 1
2

Realization: y = 3⇒ Corresponds to a λ-value of 5
3 < 2, but H1 : λ > 2→

Never reject H0

Example 2 (c)

Suppose y =
∑5

i=1 xi = 2< 2.5
For what α do we accept H0 (i.e., what is the P-value for y = 2?)

P-value: P(Y ≤ 2|H0 is true) = P (Y ≤ 2|Y ∼ Erl(λ = 2, n = 5))

= 4
3

∫ 2
0 x4 exp(−2 x) dx = . . . = 1− 34 · 1

3 · exp(−4) = 0.3712
(probably accept H0)
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