Lecture 5: Probabilities and distributions (Part 3)

Kateřina Staňková

Statistics (MAT1003)
April 19, 2012

Outline

(1) Some News
(2) Continuous Joint PD
(3) Continuous Marginal Distributions

4 Conditional Probabilities
(5) Conditional Probability Distributions

- Discrete
- Continuous = Density

And now

(1) Some News
(2) Continuous Joint PD
(3) Continuous Marginal Distributions
(4) Conditional Probabilities
(5) Conditional Probability Distributions

- Discrete
- Continuous = Density

News

- Homework deadline: almost one day later: April 24, 13.35; also new homework will be assigned on Tuesday
- Absence: Measured from $\frac{2}{2}$ of classes

News

- Homework deadline: almost one day later: April 24, 13.35; also new homework will be assigned on Tuesday

News

- Homework deadline: almost one day later: April 24, 13.35; also new homework will be assigned on Tuesday
- Absence: Measured from $\frac{2}{3}$ of classes

News

- Homework deadline: almost one day later: April 24, 13.35; also new homework will be assigned on Tuesday
- Absence: Measured from $\frac{2}{3}$ of classes
- April 23: Exercise session \Rightarrow lot of theory today

And now

(1) Some News
(2) Continuous Joint PD
(3) Continuous Marginal Distributions
(4) Conditional Probabilities
(5) Conditional Probability Distributions

- Discrete
- Continuous = Density
book: Section 3.4

Continuous Joint Probability Distribution

Let X be a continuous RV with probability density function f. Then

$$
\begin{aligned}
f(x)=F^{\prime}(x) & =\frac{\mathrm{d}}{\mathrm{~d} x} P(X \leq x) \\
& =\lim _{\Delta x \rightarrow 0} \frac{P(X \leq x+\Delta x)-P(X \leq x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{P(x \leq X \leq x+\Delta x)}{\Delta x}
\end{aligned}
$$

book: Section 3.4

Continuous Joint Probability Distribution

Let X be a continuous RV with probability density function f. Then

$$
\begin{aligned}
f(x)=F^{\prime}(x) & =\frac{\mathrm{d}}{\mathrm{~d} x} P(X \leq x) \\
& =\lim _{\Delta x \rightarrow 0} \frac{P(X \leq x+\Delta x)-P(X \leq x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{P(x \leq X \leq x+\Delta x)}{\Delta x}
\end{aligned}
$$

Analogously for 2 continuous RV's X and Y :

$$
f(x, y)=\lim _{(\delta, \epsilon) \rightarrow(0,0)} \frac{P(x \leq X \leq x+\delta, y \leq Y \leq y+\epsilon)}{\delta \epsilon}
$$

is the joint probability density function.

Continuous Joint Probability Distribution

For 2 continuous RV's X and Y :

$$
f(x, y)=\lim _{(\delta, \epsilon) \rightarrow(0,0)} \frac{P(x \leq X \leq x+\delta, y \leq Y \leq y+\epsilon)}{\delta \epsilon}
$$

is the joint probability density function.
\square

Continuous Joint Probability Distribution

For 2 continuous RV's X and Y :

$$
f(x, y)=\lim _{(\delta, \epsilon) \rightarrow(0,0)} \frac{P(x \leq X \leq x+\delta, y \leq Y \leq y+\epsilon)}{\delta \epsilon}
$$

is the joint probability density function.

Properties of Continuous Joint PD

Continuous Joint Probability Distribution

For 2 continuous RV's X and Y :

$$
f(x, y)=\lim _{(\delta, \epsilon) \rightarrow(0,0)} \frac{P(x \leq X \leq x+\delta, y \leq Y \leq y+\epsilon)}{\delta \epsilon}
$$

is the joint probability density function.

Properties of Continuous Joint PD

(1) $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$

Continuous Joint Probability Distribution

For 2 continuous RV's X and Y :

$$
f(x, y)=\lim _{(\delta, \epsilon) \rightarrow(0,0)} \frac{P(x \leq X \leq x+\delta, y \leq Y \leq y+\epsilon)}{\delta \epsilon}
$$

is the joint probability density function.

Properties of Continuous Joint PD

(1) $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$
(2) $\iint_{\mathbb{R}^{2}} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \mathrm{d} x \mathrm{~d} y=1$

Continuous Joint Probability Distribution

For 2 continuous RV's X and Y :

$$
f(x, y)=\lim _{(\delta, \epsilon) \rightarrow(0,0)} \frac{P(x \leq X \leq x+\delta, y \leq Y \leq y+\epsilon)}{\delta \epsilon}
$$

is the joint probability density function.

Properties of Continuous Joint PD

(1) $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$
(2) $\iint_{\mathbb{R}^{2}} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \mathrm{d} x \mathrm{~d} y=1$
(3) $\iint_{A} f(x, y) \mathrm{d} x \mathrm{~d} y=P((x, y) \in A)$ for all $A \subseteq \mathbb{R}^{2}$

Properties of Continuous Joint PD

(1) $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$
(2) $\iint f(x, y) \mathrm{d} x \mathrm{~d} y=1$
\mathbb{R}^{2}
(3) $\iint_{A} f(x, y) \mathrm{d} x \mathrm{~d} y=P((x, y) \in A)$ for all $A \subseteq \mathbb{R}^{2}$

Properties of Continuous Joint PD

(c) $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$
(2) $\iint_{\mathbb{R}^{2}} f(x, y) \mathrm{d} x \mathrm{~d} y=1$
(3) $\iint_{A} f(x, y) \mathrm{d} x \mathrm{~d} y=P((x, y) \in A)$ for all $A \subseteq \mathbb{R}^{2}$

Example 1

X, Y RV's with

$$
f(x, y)= \begin{cases}\frac{y}{2 x^{2}}, & \frac{1}{2}<x<1,0<y<2 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Validate condition 2. (b) Calculate $P\left(X \geq \frac{3}{5}\right)$

Example 1(a): Verify $\iint f(x, y) \mathrm{d} x \mathrm{~d} y=1$
 $$
\left(f(x, y)=\frac{y}{2 x^{2}}, \text { if } \frac{1}{2}<x<1,0<y<2 \text { and } 0\right. \text { elsewhere) }
$$

$$
\iint_{\mathbb{R}^{2}} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{\frac{1}{2}}^{1} \int_{0}^{2} \frac{y}{2 x^{2}} \mathrm{~d} y \mathrm{~d} x
$$

$$
=\int_{\frac{1}{2}}^{1}\left[\frac{y^{2}}{4 x^{2}}\right]_{0}^{2} \mathrm{~d} x=\int_{\frac{1}{2}}^{1} \frac{1}{x^{2}} \mathrm{~d} x=-\left[\frac{1}{x}\right]_{\frac{1}{2}}^{1}=1
$$

Example 1(a): Verify $\iint_{\mathbb{R}^{2}} f(x, y) \mathrm{d} x \mathrm{~d} y=1$
 $$
\left(f(x, y)=\frac{y}{2 x^{2}}, \text { if } \frac{1}{2}<x<1,0<y<2 \text { and } 0\right. \text { elsewhere) }
$$

$$
\iint_{\mathbb{R}^{2}} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{\frac{1}{2}}^{1} \int_{0}^{2} \frac{y}{2 x^{2}} \mathrm{~d} y \mathrm{~d} x
$$

$$
=\int_{\frac{1}{2}}^{1}\left[\frac{y^{2}}{4 x^{2}}\right]_{0}^{2} \mathrm{~d} x=\int_{\frac{1}{2}}^{1} \frac{1}{x^{2}} \mathrm{~d} x=-\left[\frac{1}{x}\right]_{\frac{1}{2}}^{1}=1
$$

Example 1(b): Calculate $P\left(X \geq \frac{3}{5}\right)$

$$
P\left(X \geq \frac{3}{5}\right)=\int_{\frac{3}{5}}^{1} \int_{0}^{2} \frac{y}{2 x^{2}} \mathrm{~d} y \mathrm{~d} x=\int_{\frac{3}{5}}^{1} \frac{1}{x^{2}} \mathrm{~d} x=\frac{2}{3}
$$

Properties of Continuous Joint PD

(1) $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$
(2) $\iint f(x, y) \mathrm{d} x \mathrm{~d} y=1$
\mathbb{R}^{2}
(3) $\iint_{A} f(x, y) \mathrm{d} x \mathrm{~d} y=P((x, y) \in A)$ for all $A \subseteq \mathbb{R}^{2}$

Properties of Continuous Joint PD

(1) $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$
(2) $\iint_{\mathbb{R}^{2}} f(x, y) \mathrm{d} x \mathrm{~d} y=1$
(3) $\iint_{A} f(x, y) \mathrm{d} x \mathrm{~d} y=P((x, y) \in A)$ for all $A \subseteq \mathbb{R}^{2}$

Example 2

X, Y RV's with

$$
f(x, y)=\left\{\begin{array}{l}
10 x y^{2}, \quad 0<x<y<1 \\
0, \quad \text { elsewhere }
\end{array}\right.
$$

(a) Validate condition 2. (b) Calculate $P\left(\frac{1}{4} \leq Y \leq \frac{1}{2}\right)$
(c) Calculate $P\left(\frac{1}{8} \leq X \leq \frac{3}{8}, \frac{1}{4} \leq Y \leq \frac{1}{2}\right)$

Example 2(a): Verify $\iint f(x, y) \mathrm{d} x \mathrm{~d} y=1$

$$
\left(f(x, y)=\left\{\begin{array}{l}
10 x y^{2}, \quad 0<x<y<1 \\
0, \quad \text { elsewhere }
\end{array}\right)\right.
$$

Find the proper area:
Either we notice that x is between 0 and 1 and that y is
between x and 1

Example 2(a): Verify $\iint_{\mathbb{R}^{2}} f(x, y) \mathrm{d} x \mathrm{~d} y=1$

$$
\left(f(x, y)=\left\{\begin{array}{l}
10 x y^{2}, \quad 0<x<y<1 \\
0, \quad \text { elsewhere }
\end{array}\right)\right.
$$

Find the proper area:

- Either we notice that x is between 0 and 1 and that y is between x and 1

Example 2(a): Verify $\iint_{\mathbb{R}^{2}} f(x, y) \mathrm{d} x \mathrm{~d} y=1$

$$
\left(f(x, y)=\left\{\begin{array}{ll}
10 x y^{2}, & 0<x<y<1 \\
0, & \text { elsewhere }
\end{array}\right)\right.
$$

Find the proper area:

- Either we notice that x is between 0 and 1 and that y is between x and 1
- Or: y between 0 and 1 and x between 0 and y

Example 2(a): Verify $\iint_{\mathbb{R}^{2}} f(x, y) \mathrm{d} x \mathrm{~d} y=1$

$$
\left(f(x, y)=\left\{\begin{array}{l}
10 x y^{2}, \quad 0<x<y<1 \\
0, \quad \text { elsewhere }
\end{array}\right)\right.
$$

Find the proper area:

- Either we notice that x is between 0 and 1 and that y is between x and 1
- Or: y between 0 and 1 and x between 0 and y

$$
\begin{aligned}
\iint_{\mathbb{R}^{2}} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{0}^{1} \int_{x}^{1} 10 x y^{2} \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{1} \int_{0}^{y} 10 x y^{2} \mathrm{~d} x \mathrm{~d} y=1
\end{aligned}
$$

Example 2(b): Calculate $P\left(\frac{1}{4} \leq Y \leq \frac{1}{2}\right)$

$$
\left(f(x, y)=\left\{\begin{array}{ll}
10 x y^{2}, & 0<x<y<1 \\
0, & \text { elsewhere }
\end{array}\right)\right.
$$

Example 2(b): Calculate $P\left(\frac{1}{4} \leq Y \leq \frac{1}{2}\right)$

$$
\left(f(x, y)=\left\{\begin{array}{l}
10 x y^{2}, \quad 0<x<y<1 \\
0, \quad \text { elsewhere }
\end{array}\right)\right.
$$

Area $A: 0 \leq x \leq y \leq 1$ and $\frac{1}{4} \leq y \leq \frac{1}{2}$

Example 2(b): Calculate $P\left(\frac{1}{4} \leq Y \leq \frac{1}{2}\right)$

$$
\left(f(x, y)=\left\{\begin{array}{l}
10 x y^{2}, \quad 0<x<y<1 \\
0, \quad \text { elsewhere }
\end{array}\right.\right.
$$

Area $A: 0 \leq x \leq y \leq 1$ and $\frac{1}{4} \leq y \leq \frac{1}{2}$

$$
\begin{aligned}
\iint_{A} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{\frac{1}{4}}^{\frac{1}{2}} \int_{0}^{y} 10 x y^{2} \mathrm{~d} x \mathrm{~d} y=\int_{\frac{1}{4}}^{\frac{1}{2}}\left[5 x^{2} y^{2}\right]_{x=0}^{x=y} \mathrm{~d} y \\
& =\int_{\frac{1}{4}}^{\frac{1}{2}} 5 y^{4} \mathrm{~d} y=\left[y^{5}\right]_{\frac{1}{4}}^{\frac{1}{2}}=\frac{31}{1024}
\end{aligned}
$$

Example 2(c): Calculate $P\left(\frac{1}{8} \leq X \leq 38, \frac{1}{4} \leq Y \leq \frac{1}{2}\right)$

$$
\left(f(x, y)=\left\{\begin{array}{ll}
10 x y^{2}, & 0<x<y<1 \\
0, & \text { elsewhere }
\end{array}\right)\right.
$$

Area A

Example 2(c): Calculate $P\left(\frac{1}{8} \leq X \leq 38, \frac{1}{4} \leq Y \leq \frac{1}{2}\right)$

$$
\left(f(x, y)=\left\{\begin{array}{l}
10 x y^{2}, \quad 0<x<y<1 \\
0, \quad \text { elsewhere }
\end{array}\right)\right.
$$

Area A

Example 2(c): Calculate $P\left(\frac{1}{8} \leq X \leq 38, \frac{1}{4} \leq Y \leq \frac{1}{2}\right)$

$$
\left(f(x, y)=\left\{\begin{array}{l}
10 x y^{2}, \quad 0<x<y<1 \\
0, \quad \text { elsewhere }
\end{array}\right)\right.
$$

Area A

- $0 \leq x \leq y, \frac{1}{8} \leq x \leq \frac{3}{8}, \frac{1}{4} \leq y \leq \frac{1}{2}$
- If $\frac{1}{8} \leq x \leq \frac{1}{4}$, then $\frac{1}{4} \leq y \leq \frac{1}{2}$ and if $\frac{1}{4} \leq x \leq \frac{3}{8}$, then $x \leq y \leq \frac{1}{2}$

Example 2(c): Calculate $P\left(\frac{1}{8} \leq X \leq 38, \frac{1}{4} \leq Y \leq \frac{1}{2}\right)$

$$
\left(f(x, y)=\left\{\begin{array}{ll}
10 x y^{2}, & 0<x<y<1 \\
0, & \text { elsewhere }
\end{array}\right)\right.
$$

Area A

- $0 \leq x \leq y, \frac{1}{8} \leq x \leq \frac{3}{8}, \frac{1}{4} \leq y \leq \frac{1}{2}$
- If $\frac{1}{8} \leq x \leq \frac{1}{4}$, then $\frac{1}{4} \leq y \leq \frac{1}{2}$ and if $\frac{1}{4} \leq x \leq \frac{3}{8}$, then $x \leq y \leq \frac{1}{2}$
$\iint_{A} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{\frac{1}{8}}^{\frac{1}{4}} \int_{\frac{1}{4}}^{\frac{1}{2}} 10 x y^{2} \mathrm{~d} y \mathrm{~d} x+\int_{\frac{1}{4}}^{\frac{3}{8}} \int_{x}^{\frac{1}{2}} 10 x y^{2} \mathrm{~d} y \mathrm{~d} x$

$$
=\int_{\frac{1}{8}}^{\frac{1}{4}}\left[\frac{10}{3} x y^{3}\right]_{y=\frac{1}{4}}^{\frac{1}{2}} \mathrm{~d} x+\int_{\frac{1}{4}}^{\frac{3}{8}}\left[\frac{10}{3} x y^{3}\right]_{y=x}^{\frac{1}{2}} \mathrm{~d} x
$$

Example 2(c): Calculate $P\left(\frac{1}{8} \leq X \leq 38, \frac{1}{4} \leq Y \leq \frac{1}{2}\right)$

$$
\begin{aligned}
& \left(f(x, y)=\left\{\begin{array}{cc}
10 x y^{2}, & 0<x<y<1 \\
0, & \text { elsewhere }
\end{array}\right)\right. \\
&) \mathrm{d} x \mathrm{~d} y=\int_{\frac{1}{8}}^{\frac{1}{4}} \int_{\frac{1}{4}}^{\frac{1}{2}} 10 x y^{2} \mathrm{~d} y \mathrm{~d} x+\int_{\frac{1}{4}}^{\frac{3}{8}} \int_{x}^{\frac{1}{2}} 10 x y^{2} \mathrm{~d} y \mathrm{~d} x \\
& =\int_{\frac{1}{8}}^{\frac{1}{4}}\left[\frac{10}{3} x y^{3}\right]_{y=\frac{1}{4}}^{\frac{1}{2}} \mathrm{~d} x+\int_{\frac{1}{4}}^{\frac{3}{8}}\left[\frac{10}{3} x y^{3}\right]_{y=x}^{\frac{1}{2}} \mathrm{~d} x \\
& =\int_{\frac{1}{8}}^{\frac{1}{4}} \frac{35}{64} x \mathrm{~d} x+\int_{\frac{1}{4}}^{\frac{3}{8}}\left(\frac{5}{12} x-\frac{10}{3} x^{4}\right) \mathrm{d} x \\
& =\frac{35}{128}\left[x^{2}\right]_{x=\frac{1}{8}}^{\frac{1}{4}}+\left[\left(\frac{5}{24} x^{2}-\frac{2}{3} x^{5}\right)\right]_{x=\frac{1}{4}}^{\frac{3}{8}}=\frac{1219}{49152}
\end{aligned}
$$

And now

(1) Some News
(2) Continuous Joint PD
(3) Continuous Marginal Distributions
(4) Conditional Probabilities
(5) Conditional Probability Distributions

- Discrete
- Continuous = Density

Probability density $g(x)$

Let X and Y be RV's with joint PDF $f(x, y)$. Then

$$
g(\tilde{x})=G^{\prime}(\tilde{x})=\lim _{\delta \nless 0} \frac{P(\tilde{x} \leq X \leq \tilde{x}+\delta)}{\delta}
$$

Probability density $g(x)$

Let X and Y be RV's with joint PDF $f(x, y)$. Then

$$
g(\tilde{x})=G^{\prime}(\tilde{x})=\lim _{\delta \downarrow 0} \frac{P(\tilde{x} \leq X \leq \tilde{x}+\delta)}{\delta}
$$

$$
P(\tilde{x} \leq X \leq \tilde{x}+\delta)
$$

$$
P(\tilde{x} \leq X \leq \tilde{x}+\delta)=P(\tilde{x} \leq X \leq \tilde{x}+\delta, Y \in \mathbb{R})
$$

$$
=\int_{-\infty}^{\infty} \underbrace{\int_{x=\tilde{x}}^{\tilde{x}+\delta} f(x, y) \mathrm{d} x}_{\approx \delta f(\tilde{x}, y) \text { if } \delta \downarrow 0} \mathrm{~d} y \approx \int_{-\infty}^{\infty} \delta f(\tilde{x}, y) \mathrm{d} y=\delta \int_{-\infty}^{\infty} f(\tilde{x}, y) \mathrm{d} y
$$

Marginal probability density function of $X-g(x)$

$$
g(x)=\lim _{\delta \downarrow 0} \frac{P(x \leq X \leq x+\delta)}{\delta}=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y
$$

We integrate over the other variable.

Marginal probability density function of $Y-h(x)$

Marginal probability density function of $X-g(x)$

$$
g(x)=\lim _{\delta \downarrow 0} \frac{P(x \leq X \leq x+\delta)}{\delta}=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y
$$

We integrate over the other variable.

We integrate over the other variable.

Marginal probability density function of $X-g(x)$

$$
g(x)=\lim _{\delta \downarrow 0} \frac{P(x \leq X \leq x+\delta)}{\delta}=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y
$$

We integrate over the other variable.
Marginal probability density function of $Y-h(x)$

$$
h(y)=\lim _{\epsilon \downarrow 0} \frac{P(y \leq Y \leq y+\epsilon)}{\epsilon}=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} x
$$

Marginal probability density function of $X-g(x)$

$$
g(x)=\lim _{\delta \downarrow 0} \frac{P(x \leq X \leq x+\delta)}{\delta}=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y
$$

We integrate over the other variable.
Marginal probability density function of $Y-h(x)$

$$
h(y)=\lim _{\epsilon \downarrow 0} \frac{P(y \leq Y \leq y+\epsilon)}{\epsilon}=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} x
$$

We integrate over the other variable.

Marginal probability density function of $X-g(x)$

$$
g(x)=\lim _{\delta \downarrow 0} \frac{P(x \leq X \leq x+\delta)}{\delta}=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y
$$

We integrate over the other variable.

Marginal probability density function of $X-g(x)$

$$
g(x)=\lim _{\delta \downarrow 0} \frac{P(x \leq X \leq x+\delta)}{\delta}=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y
$$

We integrate over the other variable.

Example 1

$$
f(x, y)= \begin{cases}\frac{y}{2^{2} x^{2}}, & \frac{1}{2}<x<1,0<y<2 \\ 0, & \text { otherwise }\end{cases}
$$

Find marginal density functions $g(x), h(y)$

Marginal probability density function of $X-g(x)$

$$
g(x)=\lim _{\delta \downarrow 0} \frac{P(x \leq X \leq x+\delta)}{\delta}=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y
$$

We integrate over the other variable.

Example 1

$$
f(x, y)= \begin{cases}\frac{y}{2 x^{2}}, & \frac{1}{2}<x<1,0<y<2 \\ 0, & \text { otherwise }\end{cases}
$$

Find marginal density functions $g(x), h(y)$
$g(x)=\left\{\begin{array}{l}\int_{0}^{2} \frac{y}{2 x^{2}} \mathrm{~d} y=\left[\frac{y^{2}}{4 x^{2}}\right]_{y=0}^{2}=\frac{1}{x^{2}}, \quad \frac{1}{2}<x<1 \\ 0, \quad \text { elsewhere }\end{array}\right.$

Marginal probability density function of $X-g(x)$

$$
g(x)=\lim _{\delta \downarrow 0} \frac{P(x \leq X \leq x+\delta)}{\delta}=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y
$$

We integrate over the other variable.

Example 1

$$
f(x, y)= \begin{cases}\frac{y}{2 x^{2}}, \quad \frac{1}{2}<x<1,0<y<2 \\ 0, & \text { otherwise }\end{cases}
$$

Find marginal density functions $g(x), h(y)$

$$
\begin{aligned}
& g(x)=\left\{\begin{array}{l}
\int_{0}^{2} \frac{y}{2 x^{2}} \mathrm{~d} y=\left[\frac{y^{2}}{4 x^{2}}\right]_{y=0}^{2}=\frac{1}{x^{2}}, \quad \frac{1}{2}<x<1 \\
0, \quad \text { elsewhere }
\end{array}\right. \\
& h(y)= \begin{cases}\int_{\frac{1}{2}}^{1} \frac{y}{2 x^{2}} \mathrm{~d} x=\left[-\frac{y}{2 x}\right]_{x=\frac{1}{2}}^{1}=\frac{1}{2} y, & 0<y<2 \\
0, & \text { elsewhere }\end{cases}
\end{aligned}
$$

Marginal probability density function of $X-g(x)$

$$
g(x)=\lim _{\delta \downarrow 0} \frac{P(x \leq X \leq x+\delta)}{\delta}=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y
$$

Hence: Integrate over the other variable.

Marginal probability density function of $X-g(x)$

$$
g(x)=\lim _{\delta \downarrow 0} \frac{P(x \leq X \leq x+\delta)}{\delta}=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y
$$

Hence: Integrate over the other variable.

Example 2

$$
f(x, y)= \begin{cases}10 x y^{2}, \quad 0<x<y<1 \\ 0, & \text { otherwise }\end{cases}
$$

Find marginal density functions $g(x), h(y)$

Marginal probability density function of $X-g(x)$

$$
g(x)=\lim _{\delta \downarrow 0} \frac{P(x \leq X \leq x+\delta)}{\delta}=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y
$$

Hence: Integrate over the other variable.

Example 2

$$
f(x, y)=\left\{\begin{array}{l}
10 x y^{2}, \quad 0<x<y<1 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Find marginal density functions $g(x), h(y)$
$g(x)=\left\{\begin{array}{l}\int_{x}^{1} 10 x y^{2} \mathrm{~d} y=\left[\frac{10}{3} x y^{3}\right]_{y=x}^{1}=\frac{10}{3} x-\frac{10}{3} x^{4}, \\ 0, \\ 0<x<1 \\ 0, \\ \text { elsewhere }\end{array}\right.$

Marginal probability density function of $X-g(x)$

$$
g(x)=\lim _{\delta \downarrow 0} \frac{P(x \leq X \leq x+\delta)}{\delta}=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y
$$

Hence: Integrate over the other variable.

Example 2

$$
f(x, y)=\left\{\begin{array}{l}
10 x y^{2}, \quad 0<x<y<1 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Find marginal density functions $g(x), h(y)$
$g(x)=\left\{\begin{array}{l}\int_{x}^{1} 10 x y^{2} \mathrm{~d} y=\left[\frac{10}{3} x y^{3}\right]_{y=x}^{1}=\frac{10}{3} x-\frac{10}{3} x^{4}, \\ 0, \\ 0<x<1\end{array}\right.$
$h(y)= \begin{cases}\int_{0}^{y} 10 x y^{2} \mathrm{~d} x=\left[5 x^{2} y^{2}\right]_{x=0}^{y}=5 y^{4}, & 0<y<1 \\ 0, & \text { elsewhere }\end{cases}$

And now

(1) Some News
(2) Continuous Joint PD
(3) Continuous Marginal Distributions

4 Conditional Probabilities
(5) Conditional Probability Distributions

- Discrete
- Continuous = Density
book: Section 2.6
Main Question
book: Section 2.6

Main Question

If we already know that an event A occurs, what is then the probability that an event B occurs?
book: Section 2.6

Main Question

If we already know that an event A occurs, what is then the probability that an event B occurs?

Example

$$
S=\{1,2,3,4\}, P(\{i\})=\frac{i}{10}, i=1,2,3,4
$$

book: Section 2.6

Main Question

If we already know that an event A occurs, what is then the probability that an event B occurs?

Example

$$
\begin{aligned}
& S=\{1,2,3,4\}, P(\{i\})=\frac{i}{10}, i=1,2,3,4 \\
& A=\{1,2\}, B=\{2,3\}
\end{aligned}
$$

book: Section 2.6

Main Question

If we already know that an event A occurs, what is then the probability that an event B occurs?

Example

$S=\{1,2,3,4\}, P(\{i\})=\frac{i}{10}, i=1,2,3,4$
$A=\{1,2\}, B=\{2,3\}$
$B \mid A$: The event B given A
book: Section 2.6

Main Question

If we already know that an event A occurs, what is then the probability that an event B occurs?

Example

$S=\{1,2,3,4\}, P(\{i\})=\frac{i}{10}, i=1,2,3,4$
$A=\{1,2\}, B=\{2,3\}$
$B \mid A$: The event B given $A=\{2\}=A \cap B$
book: Section 2.6

Main Question

If we already know that an event A occurs, what is then the probability that an event B occurs?

Example

$S=\{1,2,3,4\}, P(\{i\})=\frac{i}{10}, i=1,2,3,4$
$A=\{1,2\}, B=\{2,3\}$
$B \mid A$: The event B given $A=\{2\}=A \cap B$
But given that A occurs the sample space is actually reduced to
$A=\{1,2\}$

book: Section 2.6

Main Question

If we already know that an event A occurs, what is then the probability that an event B occurs?

Example

$S=\{1,2,3,4\}, P(\{i\})=\frac{i}{10}, i=1,2,3,4$
$A=\{1,2\}, B=\{2,3\}$
$B \mid A$: The event B given $A=\{2\}=A \cap B$
But given that A occurs the sample space is actually reduced to
$A=\{1,2\}$
$P(B \mid A)=\frac{P(\{2\})}{P(\{1,2\})}=\frac{\frac{2}{10}}{\frac{10}{10}}=\frac{2}{3}$ (conditional probability)

Conditional probability

Dependence of events

Conditional probability

Probability of event B given A is

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

for any two events A and B, as long as $P(A)>0$.

Dependence of events

In the example we have $P(B)$

Conditional probability

Probability of event B given A is

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

for any two events A and B, as long as $P(A)>0$.

Dependence of events

In the example we have $P(B)=\frac{1}{2}, P(B \mid A)=\frac{2}{3}$

Conditional probability

Probability of event B given A is

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

for any two events A and B, as long as $P(A)>0$.

Dependence of events

In the example we have $P(B)=\frac{1}{2}, P(B \mid A)=\frac{2}{3}$

Conditional probability

Probability of event B given A is

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

for any two events A and B, as long as $P(A)>0$.

Dependence of events

In the example we have $P(B)=\frac{1}{2}, P(B \mid A)=\frac{2}{3}$
So apparently the probability that B occurs changes if we have the additional info that A occurs: $P(B) \neq P(B \mid A)$

Conditional probability

Probability of event B given A is

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

for any two events A and B, as long as $P(A)>0$.

Dependence of events

In the example we have $P(B)=\frac{1}{2}, P(B \mid A)=\frac{2}{3}$
So apparently the probability that B occurs changes if we have the additional info that A occurs: $P(B) \neq P(B \mid A)$
A and B are dependent

Independence of $R V$

Independence of RV

A and B are called independent if (a) $P(A \mid B)=P(A)$ or (b) $P(B \mid A)=P(B)$

Independence of RV

A and B are called independent if (a) $P(A \mid B)=P(A)$ or (b) $P(B \mid A)=P(B)$
(a) and (b) are equivalent if $P(A)>0, P(B)>0$

Independence of RV

A and B are called independent if (a) $P(A \mid B)=P(A)$ or (b) $P(B \mid A)=P(B)$
(a) and (b) are equivalent if $P(A)>0, P(B)>0$

Since $P(A \cap B)=P(A) \cdot P(B \mid A)$ and $P(A \cap B)=P(B) \cdot P(A \mid B))$, A and B are independent $\Leftrightarrow P(A \cap B)=P(A) \cdot P(B)$

And now ...

Some NewsContinuous Joint PD(3) Continuous Marginal DistributionsConditional Probabilities
(5) Conditional Probability Distributions

- Discrete
- Continuous = Density
book: Section 3.4

Conditional Probability Distribution

Let X and Y be discrete RV's with joint probability distribution f. The conditional probability of X given that Y has the value y is $f(x \mid y)=P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{f(x, y)}{h(y)}$
book: Section 3.4

Conditional Probability Distribution

Let X and Y be discrete RV's with joint probability distribution f. The conditional probability of X given that Y has the value y is $f(x \mid y)=P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{f(x, y)}{h(y)}$

Example

Throwing 2 dice, X : maximum, Y : minimum. What is conditional probability distribution of X given $Y=2$?
book: Section 3.4

Conditional Probability Distribution

Let X and Y be discrete RV's with joint probability distribution f. The conditional probability of X given that Y has the value y is $f(x \mid y)=P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{f(x, y)}{h(y)}$

Example

Throwing 2 dice, X : maximum, Y : minimum. What is conditional probability distribution of X given $Y=2$?
$(\mathrm{CAH}) P(Y=2)=\frac{1}{4}, x=3,4,5,6: f(x, y)=\frac{1}{18}$,
$x=2: f(x, y)=\frac{1}{36}$
book: Section 3.4

Conditional Probability Distribution

Let X and Y be discrete RV's with joint probability distribution f. The conditional probability of X given that Y has the value y is $f(x \mid y)=P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{f(x, y)}{h(y)}$

Example

Throwing 2 dice, X : maximum, Y : minimum. What is conditional probability distribution of X given $Y=2$? $(\mathrm{CAH}) P(Y=2)=\frac{1}{4}, x=3,4,5,6: f(x, y)=\frac{1}{18}$,

$x=2: f(x, y)=\frac{1}{36}$	x	2	$3,4,5$
$P(X=x \mid Y=2)$	$\frac{1}{\frac{36}{16}}=\frac{1}{9}$	$\frac{1}{18} \frac{1}{4}=\frac{2}{9}$	

book: Section 3.4

Conditional Probability Distribution

Let X and Y be continuous RV's with joint probability density f. The conditional probability of X given that Y has the value y is
book: Section 3.4

Conditional Probability Distribution

Let X and Y be continuous RV's with joint probability density f. The conditional probability of X given that Y has the value y is

$$
\begin{aligned}
f(x \mid y) & =\lim _{(\delta, \epsilon) \downarrow 0} \frac{P(x \leq X \leq x+\delta \mid y \leq Y \leq y+\epsilon)}{\delta} \\
= & \lim _{(\delta, \epsilon) \downarrow 0} \frac{P(x \leq X \leq x+\delta, y \leq Y \leq y+\epsilon)}{\delta \cdot P(y \leq Y \leq y+\epsilon)} \\
& =\lim _{(\delta, \epsilon) \downarrow 0} \frac{P(x \leq X \leq x+\delta, y \leq Y \leq y+\epsilon)}{\delta \epsilon} \cdot \frac{\epsilon}{P(y \leq Y \leq y+\epsilon)} \\
& =f(x, y) \cdot \frac{1}{h(y)}=\frac{f(x, y)}{h(y)}, \quad \text { provided } h(y)>0
\end{aligned}
$$

book: Section 3.4

Conditional Probability Distribution

Let X and Y be continuous RV's with joint probability density f. The conditional probability of X given that Y has the value y is

$$
\begin{aligned}
f(x \mid y) & =\lim _{(\delta, \epsilon) \downarrow 0} \frac{P(x \leq X \leq x+\delta \mid y \leq Y \leq y+\epsilon)}{\delta} \\
& =\lim _{(\delta, \epsilon) \downarrow 0} \frac{P(x \leq X \leq x+\delta, y \leq Y \leq y+\epsilon)}{\delta \cdot P(y \leq Y \leq y+\epsilon)} \\
& =\lim _{(\delta, \epsilon) \downarrow 0} \frac{P(x \leq X \leq x+\delta, y \leq Y \leq y+\epsilon)}{\delta \epsilon} \cdot \frac{\epsilon}{P(y \leq Y \leq y+\epsilon)} \\
& =f(x, y) \cdot \frac{1}{h(y)}=\frac{f(x, y)}{h(y)}, \quad \text { provided } h(y)>0
\end{aligned}
$$

Same formula as for discrete case!

Example - from before

Let X and Y be continuous RV's with joint probability density f

$$
f(x, y)=\left\{\begin{array}{l}
10 x y^{2}, \quad, 0<x<y \leq 1 \\
0, \quad \text { elsewhere }
\end{array}\right.
$$

Calculate conditional density of X, given $Y=\frac{1}{2}$ and calculate $P\left(\left.X>\frac{1}{3} \right\rvert\, Y=\frac{1}{2}\right)$

Example - from before

Let X and Y be continuous RV's with joint probability density f

$$
f(x, y)=\left\{\begin{array}{l}
10 x y^{2}, \quad, 0<x<y \leq 1 \\
0, \quad \text { elsewhere }
\end{array}\right.
$$

Calculate conditional density of X, given $Y=\frac{1}{2}$ and calculate $P\left(\left.X>\frac{1}{3} \right\rvert\, Y=\frac{1}{2}\right)$
$y(x)=\frac{10}{3} x-\frac{10}{3} x^{4}, 0<x<1, h(y)=5 y^{4}, 0<y<1$

Example - from before

Let X and Y be continuous RV's with joint probability density f

$$
f(x, y)=\left\{\begin{array}{l}
10 x y^{2}, \quad, 0<x<y \leq 1 \\
0, \quad \text { elsewhere }
\end{array}\right.
$$

Calculate conditional density of X, given $Y=\frac{1}{2}$ and calculate $P\left(\left.X>\frac{1}{3} \right\rvert\, Y=\frac{1}{2}\right)$
$y(x)=\frac{10}{3} x-\frac{10}{3} x^{4}, 0<x<1, h(y)=5 y^{4}, 0<y<1$
$f(x \mid y)=\frac{10 x y^{2}}{5 y^{4}}=\frac{2 x}{y^{2}}, 0<x<y<1$

Example - from before

Let X and Y be continuous RV's with joint probability density f

$$
f(x, y)= \begin{cases}10 x y^{2}, & , 0<x<y \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

Calculate conditional density of X, given $Y=\frac{1}{2}$ and calculate $P\left(\left.X>\frac{1}{3} \right\rvert\, Y=\frac{1}{2}\right)$
$y(x)=\frac{10}{3} x-\frac{10}{3} x^{4}, 0<x<1, h(y)=5 y^{4}, 0<y<1$
$f(x \mid y)=\frac{10 x y^{2}}{5 y^{4}}=\frac{2 x}{y^{2}}, 0<x<y<1$
$f\left(x \left\lvert\, \frac{1}{2}\right.\right)=\left[\frac{2 x}{y^{2}}\right]_{y=\frac{1}{2}}=8 x, 0<x<\frac{1}{2}$

Example - from before

Let X and Y be continuous RV's with joint probability density f

$$
f(x, y)= \begin{cases}10 x y^{2}, & , 0<x<y \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

Calculate conditional density of X, given $Y=\frac{1}{2}$ and calculate $P\left(\left.X>\frac{1}{3} \right\rvert\, Y=\frac{1}{2}\right)$
$y(x)=\frac{10}{3} x-\frac{10}{3} x^{4}, 0<x<1, h(y)=5 y^{4}, 0<y<1$
$f(x \mid y)=\frac{10 x y^{2}}{5 y^{4}}=\frac{2 x}{y^{2}}, 0<x<y<1$
$f\left(x \left\lvert\, \frac{1}{2}\right.\right)=\left[\frac{2 x}{y^{2}}\right]_{y=\frac{1}{2}}=8 x, 0<x<\frac{1}{2}$
$P\left(\left.X>\frac{1}{3} \right\rvert\, Y=\frac{1}{2}\right)=\int_{\frac{1}{3}}^{\frac{1}{2}} 8 x \mathrm{~d} x=\left[4 x^{2}\right]_{X=\frac{1}{3}}^{\frac{1}{2}}=\frac{5}{9}$

